Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

N ELER ÖĞRENECEĞIZ ? Çokgen kavramını, içbükey ve dışbükey tanımlarını, Köşegen tanımı ve köşegen sayısını bulmayı İç açı ve dış açı ölçülerini Kenarlar.

Benzer bir sunumlar


... konulu sunumlar: "N ELER ÖĞRENECEĞIZ ? Çokgen kavramını, içbükey ve dışbükey tanımlarını, Köşegen tanımı ve köşegen sayısını bulmayı İç açı ve dış açı ölçülerini Kenarlar."— Sunum transkripti:

1 N ELER ÖĞRENECEĞIZ ? Çokgen kavramını, içbükey ve dışbükey tanımlarını, Köşegen tanımı ve köşegen sayısını bulmayı İç açı ve dış açı ölçülerini Kenarlar ile ilgili özellikleri Altıgenin özelliklerini Sekizgenin özelliklerini Çokgenin alanını bulmayı İçteğet ve çevrel çember yardımıyla alan bulmayı Öğreneceğiz.

2

3 Tanım: 3  n olmak üzere n tane noktada kesişen doğru parçalarının oluşturduğu birleşim kümesine çokgen denir.

4

5  n tane noktaya çokgenin köşeleri denir.  Oluşan doğru parçalarına çokgenin kenarları denir.  Köşeler A,B, C gibi büyük harflerle gösterilir.  Çokgenler kenar sayılarına göre adlandırılır.Üçgen, dörtgen, beşgen vs.

6 Bir çokgenin iki komşu kenarının oluşturduğu açılara çokgenin iç açıları, komşu bütünlerine de çokgenin dış açıları denir. Bir çokgenin komşu olmayan iki köşesini birleştiren her doğru parçasına çokgenin bir köşegeni denir.

7 Bir çokgenin içindeki herhangi iki noktayı birleştiren doğru parçası tamamen çokgenin içinde kalıyorsa bu çokgene konveks (dış bükey) çokgen; yoksa konkav (iç bükey) çokgen denir.

8

9

10 Özellik 1: n  3 olmak üzere, n kenarlı bir konveks çokgenin iç açılarının ölçüleri toplamı (n- 2). 180° dir. İspat:

11 İSPAT Bir çokgenin bir köşesinden çizilebilen köşegen sayısı,Çokgenin kenar sayısının 3 eksiği kadar yani (n-3) dür.Bu köşegenler çokgeni (n-2) tane üçgene ayırır.Her üçgenin iç açılar toplamı 180 derece olacağından çokgenin iç açılar toplamı (n-2).180 dir.

12 Ö RNEK :

13

14

15 Ö Zellik 2: n  3 olmak üzere, n kenarlı bir konveks çokgenin dış açılarının ölçüleri toplamı 360° dir. (sabittir, değişmez.) İspat:

16 İSPAT: n kenarlı çokgenin iç açıları; a,b,c,….k olsun. (n kenarlı çokgende n tane iç açı vardır.) O halde bu çokgenin dış açıları; 180-a,180-b,180-c,…,180-k olur. Çokgenin iç açılar toplamı; a+b+c+…+k= (n-2).180 dir. O halde dış açılar toplamı; (180-a)+(180-b)+(180-c)+…+(180-k)= 180.n - (a+b+c+…k) =180.n – (n-2).180 =180.n – 180.n =2.180 = 360 olur.Böylece ispat tamamlanmış olur.

17 Ö RNEK :

18 Özellik 3 :n > 3 olmak üzere, n kenarlı bir konveksçokgenin köşegen sayısı: 2 )3(  nn İspat:

19

20 Ö RNEK :

21

22

23 Özellik4: Bir çokgenin çizilebilmesi için en az (n - 2 ) tanesi uzunluk olmak üzere (2n - 3) eleman bilinmelidir. Buna belirli olabilme denir. İspat: Bir üçgenin belirli olabilmesi için, 1) Bir kenarı ile iki açısının 2) İki kenarı ile bir açısının yada 3) Üç kenarının Bilinmesi gerekir. Yani en az bir kenarı ve iki açısı ile bellidir.

24 ETKİNLİK: Şimdi herhangi bir ABCD dörtgenini ele alalım. K A B C D }{[[ KBCAD  ABCD dörtgensel bölgesinin, KAB üçgensel bölgesindenKCDüçgensel Bölgesinin ayrılması ile elde edildiğini düşünebiliriz. KAB üçgeni belli iken [CD] nin konumunu |AD|,|DC| yada |BC| uzunluklarından en az biri ile C veya D açılarının ölçülerinden biri belirler.

25 Demek ki, verilen bir üçgenden belirli bir dörtgen ayırabilmemiz içindörtgenin oluşacak kenarlarından en az birinin uzunluğu ile oluşacak açılardan birinin ölçüsünün bilinmesi gerekir. Hern-genin verilen bir (n-1)genden bu şekilde elde edildiğini düşünebiliriz. O halde, n kenarlı bir çokgenin belli olabilmesi için n=3 ise en az bir kenarı ve iki açısının n=4 ise en az iki kenarı ve 3 açısının n=5 ise en az üç kenarı ve 4 açısının n=n ise en az n-2 kenarı ve n-1 açısının ve toplamda 2n-3 elemanının bilinmesi gerekir.

26

27

28 Örn: 6 kenarlı bir dışbükey çokgenin a) Çizilebilmesi için en az kaç elemanı verilmelidir? b) İç açıları toplamı kaç derecedir? c) Dış açıları toplamı kaç derecedir? d) bir köşesindengeçen köşegen sayısı kaçtır? e) Bir köşesinden geçen köşegenler çokgeni kaç parçaya ayırır? f) Bütün köşegenlerinin sayısı nedir?

29

30 Bütün kenarlarının uzunlukları eşit ve bütün açılarının ölçüleri eşit olan çokgenlere düzgün çokgen denir.

31 a. şekildeki düzgün altıgende olduğu gibi düzgün çokgenlerin köşelerinden daima bir çember geçer. Bu çembere çevrel çember denir.

32 b. Düzgün çokgenlerde eşit sayıda kenarı birleştiren köşegenler birbirine eşittir. |AC|=|AE|=|BD| |AD|=|AE|=|CF|

33

34

35 ÖRNEK:

36 SORU : Bir iç açısının ölçüsü, bir dış açısının ölçüsünün 5 katı olan düzgün çokgenin köşegen sayısı kaçtır?

37 ÖRNEK: ABCDEF düzgün altıgen, olduğuna göre; oranı kaçtır ?

38 ÖRNEK : ABCDE düzgün beşgen, B, C, K doğrusal, olduğuna göre ; x kaçtır ?

39 ÖRNEK:

40 Çiftgenlerde karşılıklı Kenarlar paraleldir. Tekgenlerde köşeden karşı Kenara inilen dikme kenarı iki Eşit parçaya böler.

41 Ç=n.a *Bir kenar uzunluğu a olan n kenarlı bir çokgenin çevresi ; DÜZGÜN ÇOKGENLERİN ALAN VE ÇEVRESİ

42

43 Çevrel çemberinin yarıçapıbirim olan bir düzgün sekizgenin alanı kaç birimkaredir? ÖRNEK:

44

45

46

47 UYGULAMALAR

48

49 ÖRNEK:

50

51

52

53

54

55

56

57

58

59

60

61


"N ELER ÖĞRENECEĞIZ ? Çokgen kavramını, içbükey ve dışbükey tanımlarını, Köşegen tanımı ve köşegen sayısını bulmayı İç açı ve dış açı ölçülerini Kenarlar." indir ppt

Benzer bir sunumlar


Google Reklamları