Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.

Benzer bir sunumlar


... konulu sunumlar: "Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1."— Sunum transkripti:

1

2 Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1

3 Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  i 2  Farklı Varyans Hata Zaman 2

4 EKKY’nin varsayımlarından biri anakütle regresyon fonksiyonu u i lerin eşit varyanslı olmasıdır. Her hata terimi varyansı bağımsız değişkenlerin verilen değerlerine göre  2 ye eşit aynı (sabit) bir değerdir. Bu nedenle eşit varyansa sabit varyans da denir. i=1,2,3,…N =Eşit varyans =Farklı varyans

5 X değişkeninin değeri arttıkça Y i nin şartlı varyansı sabit değil veya eşit değildir. Farklı Varyans ile Karşılaşılan Durumlar Kesit Verilerinde. Kar dağıtım modellerinde. Sektör modellerinde. Ücret modellerinde. Deneme - Yanılma modellerinde.

6 Farklı Varyansın Ortaya Çıkardığı Sonuçlar Katsayı tahmincilerine etkisi.(EKKY uygulandığında farklı varyans varsa t ve F testleri doğru olmayan anlamsız katsayı tahminleri verecektir. Standart hatalar olduğundan daha büyük çıkacaktır, elde edilen güven aralıklarına güvenilemeyecektir. Tahminciler doğrusal ve sapmasızdırlar, ancak etkin ve eniyi tahminci olma yani minimum varyanslı olma özelliğini kaybederler. EKKY varyans formülleri kullanılamayacaktır. 5

7 Parametre Tahmincilerinin Özellikleri 1.Sapmasızlık Anakütle regresyon modeli Sapma nedeni ile  i nin beklenen değeri sıfırdan farklı ise. 6

8 Parametre Tahmincilerinin Özellikleri 1.Sapmasızlık 7

9 Parametre Tahmincilerinin Özellikleri 2.Etkinlik Modelde sabit varyans varsayımının geçerli olmaması durumunda parametre tahmincileri  0 * ve  1 * olsun.  0 * ve  1 * ın varyanslarınn doğrusal sapmasız tahmin yöntemi ile belirlenmesi: Doğrusallık şartı gereği: 8

10 2.Etkinlik in beklenen değeri ve varyansı: 9

11 3.Tutarlılık  ’nin tutarlı tahmincisidir. 10

12 3.Tutarlılık 11

13 Farklı Varyansın Belirlenmesi Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile. 12

14 Grafik Yöntem 13

15 Grafik Yöntem 14

16 Grafik Yöntem 15

17 Sıra Korelasyonu Testi 1.Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = ? s.d.=? 3.Aşama t tab =? 4.Aşama H 0 hipotezi reddedilebilir t hes > t tab 16

18 Sıra Korelasyonu Testi Y X eXsXs eses didi di2di  d i 2 =112 Mutlak değerli olarak bulundukları yer itibariyle küçükten büyüğe sıra numarası verilir d=X-e

19 Sıra Korelasyonu Testi = Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = 0.05 s.d.= 8 3.Aşama t tab = = Aşama H 0 hipotezi reddedilemez. t hes < t tab 18

20 Büyük örneklere uygulanan bir F testidir. Bu test  2 i nin farklı varyansının bağımsız değişkenlerden biri ile pozitif ilişkili olduğunu varsayar.  2 i X i ile pozitif (aynı yönde) ilişkilidir ve  2 i farklı varyansı X’in karesi ile orantılıdır. Yani X i değerleri arttıkça  2 i değeri de artmaktadır. Goldfeld-Quandt Testi

21 Y X 2s X 3... X k Y = b 1 + b 2 X 2 + b 3 X b k X k + u I.Alt Örnek n 1 II.Alt Örnek n 2 Çıkarılan Gözlemler Y I = b 11 + b 21 X 2 + b 31 X b k1 X k + u Y II = b 12 + b 22 X 2 + b 32 X b k2 X k + u n(1/6) < c < n(1/3)  e 1 2 =?  e 2 2 =? 20

22 Goldfeld-Quandt Testi 1.Aşama H 0 : Eşit Varyans H 1 : Farklı Varyans 2.Aşama  = ? 3.Aşama F tab =? 4.Aşama H 0 hipotezi reddedilebilir F hes > F tab 21 X bağımsız değişkeninin değerleri küçükyen büyüğe doğru ilgili Y bağımlı değişkeninin değerleri de taşınarak sıralanır. Ortadan c kadar gözlem çıkarılır.

23 Yıl Tasarruf Gelir

24 Tasarruf 1654 Gelir Gelir bağımsız değişkenine göre tasarrufu da sıralıyoruz.

25 n1n1 TasarrfufGelirn2n2 TasarrfufGelir Gelire göre sırandı. Ortadan 31/4=8 veya 9 gözlem çıkarılacak. İki alt grup oluşturuldu.

26 (189.4)(0.015) (709.8) (0.02)

27 f 1 =f 2 =(n-c-2k)/2=9 sd de F tab =3.18

28 lnMaas = b 1 + b 2 Yıl + b 3 Yıl 2 Goldfeld-Quandt Test Dependent Variable: lnMaas Included observations: 222 VariableCoefficientStd. Errort-StatisticProb. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

29 1.alt örnek sonuçları: Goldfeld-Quandt Test Dependent Variable: lnmaas Sample: 1 75 Included observations: 75 VariableCoefficientStd. Errort-StatisticProb. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

30 Goldfeld-Quandt Test 2.Altörnek Sonuçları: Dependent Variable: lnmaas Sample: Included observations: 75 VariableCoefficientStd. Errort-StatisticProb. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

31 Goldfeld-Quandt Testi 1.Aşama H 0 : Eşit Varyans H 1 : Farklı Varyans 2.Aşama  = Aşama 1.43 F tab =

32 Breusch – Pagan Testi Y i = b 1 + b 2 X 2i + b 3 X 3i +……+ b k X ki +u i (1) 1.Aşama (1) Nolu denklem EKKY ile tahmin edilip. e 1. e 2. …..e n örnek hata terimleri hesaplanır. Bu e i lerden hareketle hesaplanır. 2.Aşama 3.Aşama p i = a 1 + a 2 Z 2i + a 3 Z 3i +……+ a m Z mi +v i (2) RBD = ? 31

33 Breusch – Pagan Testi 4.Aşama 5.Aşama H 0 : a 2 = a 3 =…..=a m = 0 (Eşit varyans) H 1 : En az biri sıfırdan farklıdır. (Farklı varyans) H 0 reddedilir. 32 m: (2) nolu denklemdeki parametre sayısı p i = a 1 + a 2 Z 2i + a 3 Z 3i +……+ a m Z mi +v i (2)

34 YıllarGSMHITetYıllarGSMHITet Breusch – Pagan Testi IT: İthalat 33

35 Breusch – Pagan Testi 1.Aşama 2.Aşama 34 pi

36 Breusch – Pagan Testi 3.Aşama RBD = Aşama 5.Aşama H 0 : a 2 = a 3 =…..=a m = 0 (Eşit varyans) H 1 : En az biri sıfırdan farklıdır. (Farklı varyans) H 0 reddedilemez. 35

37 Glejser Farklı Varyans Testi 1.Aşama:Y ile X (veya X’ler) arasındaki ilişki tahmin edilerek, ilgili örnek hata terimleri e’ler bulunur. 2.Aşama:  i 2 ile ilişkili olduğu düşünülen bağımsız değişken için aşağıdaki modeller denenmektedir. 36

38 Glejser Farklı Varyans Testi 3.Aşama:Korelasyon katsayısı ve a’ların standat hata değerlerine göre en uyun model seçilip H 0 : a 2 = 0 H 1 : a 2 ≠ 0 test edilir. 4.Aşama: H 0 kabul edilirse eşit varyans gerçeklemiştir sonucuna varılır. 37

39 Glejser Farklı Varyans Testi 1.Aşama: YıllarGSMHITetYıllarGSMHITet IT: İthalat 38

40 2.Aşama: Glejser Farklı Varyans Testi 3.Aşama:H 0 : a 2 = 0 H 1 : a 2 ≠ 0 4.Aşama: prob = > 0.05 H 0 reddedilemez. Eşit varyans gerçekleşmiştir. 39

41 White Testi Y = b 1 + b 2 X 2 + b 3 X 3 + u White Testi için yardımcı regresyon: u 2 = a 1 + a 2 X 2 + a 3 X 3 + a 4 X a 5 X a 6 X 2 X 3 + v R y 2 = ? White Testi Aşamaları: 1.Aşama 2.Aşama  = ? 3.Aşama 4.Aşama H 0 : a 2 = a 3 = a 4 = a 5 = a 6 =0 H 1 : a i ’lerin en az bir tanesi anlamlıdır s.d.= k-1  2 tab =? W= n.R y 2 = ? W >  2 tab H 0 hipotezi reddedilebilir 40

42 White Testi lnMaaş = yıl yıl 2 White Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : a 2 = a 3 = a 4 = a 5 =0 ; H 1 : a i ’lerin en az bir tanesi anlamlıdır s.d.=5-1=4  2 tab = W= n.R y 2 = 222(0.0901)= W >  2 tab H 0 hipotezi reddedilebilir e 2 = Yıl Yıl Yıl Yıl 4 R y 2 =

43 Lagrange Çarpanları(LM) Testi Y = b 1 + b 2 X 2 + b 3 X 3 + u LM testi için yardımcı regresyon: R y 2 = ? LM Testi Aşamaları: 1.Aşama 2.Aşama  = ? 3.Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.= 1  2 tab =? LM= n.R y 2 = ? LM >  2 tab H 0 hipotezi reddedilebilir 42

44 Lagrange Çarpanları(LM) Testi lnmaaş = yıl yıl 2 LM Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=1  2 tab = LM= n.R y 2 = 222(0.0537)= LM >  2 tab H 0 hipotezi reddedilebilir e 2 = (lnmaas-tah) 2 R y 2 =

45 Ramsey Reset Testi Y = b 1 + b 2 X 2 + b 3 X 3 +…..+b k X k + u i Ramsey Reset testi için yardımcı regresyon: H 0 : a 2 = 0 (Eşit Varyans) H 1 : a 2 ≠ 0 (Farklı Varyans) Hipotezler  hata payı ile t tablosundan bulunacak değer ile karşılaştırılır. 1.Aşama: 2.Aşama: 3.Aşama: t hes > t tab H 0 reddedilir. 44

46 Ramsey Reset Testi H 0 : a i = 0 (Eşit Varyans) H 1 : a i ≠ 0 (Farklı Varyans) 1.Aşama: 2.Aşama: 45

47 3.Aşama: t tab = t n-k,  = t 20-2, 0.05 = Ramsey Reset Testi 4.Aşama: t hesap = < t tab = H o reddedilemez 46

48 Park Testi  i 2 bilinmediğinden bunun yerine hata kareler toplamı e i 2 kullanılır. 47

49 Park Testi 1.Aşama: 2.Aşama: H 0 :  = 0 (Eşit Varyans) H 0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t hes > t tab H 0 reddedilir. 48

50 Park Testi 1.Aşama: 2.Aşama: H 0 :  = 0 (Eşit Varyans) H 0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t tab = t 18, 0.01 = ???????? t hes < t tab H 0 reddedilemez. 49

51 UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile SayısıYXu YXu

52 UYGULAMA: Y i =  0 +  1 X i +  i modeli için sabit varyans varsayımının geçerli olup olmadığını Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile. 51

53 Grafik Yöntem 52

54 Sıra Korelasyonu Testi 1.Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = 0.05 s.d.=? 3.Aşama t tab =? 4.Aşama H 0 hipotezi reddedilebilir t hes > t tab 53

55 Sıra Korelasyonu Testi 1.Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = 0.05 s.d.= 30 t tab = = Aşama H 0 hipotezi reddedilemez. t hes < t tab 54

56 Goldfeld-Quandt Testi c = 32 / 5 = gözlem atılacak. ( gözlemler) 13 gözlemden oluşan iki grup için modeller gözlemler için Y i = X i gözlemler için Y i = X i 55

57 Goldfeld-Quandt Testi 1.Aşama H 0 : Eşit Varyans H 1 : Farklı Varyans 2.Aşama  = Aşama F tab = Aşama H 0 hipotezi reddedilebilir F hes > F tab 56

58 Breusch – Pagan Testi 1.Aşama 2.Aşama 57

59 Breusch – Pagan Testi 3.Aşama RBD = Aşama 5.Aşama H 0 : a 2 = a 3 =…..=a m = 0 (Eşit varyans) H 1 : En az biri sıfırdan farklıdır. (Farklı varyans) H 0 reddedilebilir. 58

60 1.Aşama: Glejser Farklı Varyans Testi 2.Aşama:H 0 : a 2 = 0 H 1 : a 2 ≠ 0 4.Aşama: t hes > t tab H 0 reddedilebilir. Eşit varyans gerçekleşmemiştir. 3.Aşama:  = 0.05 n –k = 32 – 2 =30 t tab =

61 White Testi White Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : a 2 = a 3 = 0 ; H 1 : a i ’lerin en az bir tanesi anlamlıdır s.d.=3-1=2  2 tab =5.99 W= n.R y 2 = 32(0.2296) = W >  2 tab H 0 hipotezi reddedilebilir e 2 = X – X 2 R y 2 =

62 Lagrange Çarpanları(LM) Testi LM Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.201) = LM >  2 tab H 0 hipotezi reddedilebilir R y 2 =

63 Ramsey Reset Testi H 0 : a i = 0 (Eşit Varyans) H 1 : a i ≠ 0 (Farklı Varyans) 1.Aşama: 2.Aşama: 62 3.Aşama: t hes > t tab H 0 reddedilir.

64 3.Aşama: t tab = t n-k,  = t 32-2, 0.05 =2.042 Ramsey Reset Testi 4.Aşama: t hesap = > t tab = H 0 reddedilebilir. 63

65 Park Testi 1.Aşama: 2.Aşama: H 0 :  = 0 (Eşit Varyans) H 0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t tab = t 32-2=30, 0.05 = t hes < t tab H 0 reddedilemez. 64

66  nin BİLİNMESİ HALİ FARKLI VARYANSI ORTADAN KALDIRMA YOLLARI  nin BİLİNMEMESİ HALİ Farklı varyans durumunda EKKY tahmincileri etkinlik özelliklerini kaybettiklerinden güvenilir değildirler. Bu sebeple farklı varyans ortadan kaldırılmadan EKKY uygulanmamalıdır. Y i lerin (veya u i lerin) farklı varyansları  2 i nin bilinip bilinmemesine göre farklı varyansı kaldıran iki yol vardır:

67  nin BİLİNMESİ HALİ Y i = b 1 + b 2 X i + u i Genelleştirilmiş EKKY(GEKKY)

68  Sabit terimi yoktur.  İki tane bağımsız değişken vardır.

69 Genelleştirilmiş EKKY(GEKKY)

70

71 EKKY ve GEKKY Arasındaki Fark EKKY GEKKY min

72  nin BİLİNMEMESİ HALİ 1.HAL: LOGARİTMİK DÖNÜŞÜMLER 2.HAL:

73  nin BİLİNMEMESİ HALİ 3.HAL:

74 4.HAL:  nin BİLİNMEMESİ HALİ bölünür

75 5.HAL:  nin BİLİNMEMESİ HALİ

76 UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile SayısıYXu YXu

77 1.HAL: LOGARİTMİK DÖNÜŞÜMLER 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.0178) = LM <  2 tab H 0 hipotezi reddedilemez.

78 2.HAL: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.0509) = LM <  2 tab H 0 hipotezi reddedilemez.

79 3.HAL: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.2365) = LM >  2 tab H 0 hipotezi reddedilebilir.

80 5.HAL: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.0290) = LM <  2 tab H 0 hipotezi reddedilemez.


"Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1." indir ppt

Benzer bir sunumlar


Google Reklamları