Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.

Benzer bir sunumlar


... konulu sunumlar: "Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1."— Sunum transkripti:

1

2 Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1

3 Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  i 2  Farklı Varyans Hata Zaman 2

4 Farklı Varyans ile Karşılaşılan Durumlar Kesit Verilerinde. Kar dağıtım modellerinde. Sektör modellerinde. Ücret modellerinde. Deneme - Yanılma modellerinde. 3

5 Farklı Varyansı Gözardı Etmenin Sonuçlar Tahminci Özelliklerine etkisi. Tahminciler sapmasız ve tutarlıdırlar. ancak etkin değildirler. Hipotez testleri üzerine etkisi. Tahminciler minimum varyanslı olma özelliklerini kaybettiklerinden. bunlara bağlı olarak elde edilen t ve F istatistiklerine ve elde edilen güven aralıklarına güvenilemeyecektir. Öngörümleme üzerine etkisi. Önceden değerleri sapmalı olacaktır. 4

6 Farklı Varyansın Tesbit Edilmesi Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile. 5

7 Grafik Yöntem 6

8 7

9 8

10 Sıra Korelasyonu Testi 1.Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = ? s.d.=? 3.Aşama t tab =? 4.Aşama H 0 hipotezi reddedilebilir t hes > t tab 9

11 Sıra Korelasyonu Testi Y X eXsXs eses didi di2di  d i 2 =112 10

12 Sıra Korelasyonu Testi = Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = 0.05 s.d.= 8 3.Aşama t tab = = Aşama H 0 hipotezi reddedilemez. t hes < t tab 11

13 Goldfeld-Quandt Testi Y X 2s X 3... X k Y = b 1 + b 2 X 2 + b 3 X b k X k + u I.Alt Örnek n 1 II.Alt Örnek n 2 Çıkarılan Gözlemler Y I = b 11 + b 21 X 2 + b 31 X b k1 X k + u Y II = b 12 + b 22 X 2 + b 32 X b k2 X k + u n(1/6) < c < n(1/3)  e 1 2 =?  e 2 2 =? 12

14 Goldfeld-Quandt Testi 1.Aşama H 0 : Eşit Varyans H 1 : Farklı Varyans 2.Aşama  = ? 3.Aşama F tab =? 4.Aşama H 0 hipotezi reddedilebilir F hes > F tab 13

15 lnMaas = b 1 + b 2 Yıl + b 3 Yıl 2 Goldfeld-Quandt Test Dependent Variable: lnMaas Included observations: 222 VariableCoefficientStd. Errort-StatisticProb. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

16 1.alt örnek sonuçları: Goldfeld-Quandt Test Dependent Variable: lnmaas Sample: 1 75 Included observations: 75 VariableCoefficientStd. Errort-StatisticProb. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

17 Goldfeld-Quandt Test 2.Altörnek Sonuçları: Dependent Variable: lnmaas Sample: Included observations: 75 VariableCoefficientStd. Errort-StatisticProb. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

18 Goldfeld-Quandt Testi 1.Aşama H 0 : Eşit Varyans H 1 : Farklı Varyans 2.Aşama  = Aşama 1.43 F tab =

19 Breusch – Pagan Testi Y i = b 1 + b 2 X 2i + b 3 X 3i +……+ b k X ki +u i (1) 1.Aşama (1) Nolu denklem EKKY ile tahmin edilip. e 1,e 2, …,e n örnek hata terimleri hesaplanır. Bu e i lerden hareketle 2.Aşama 3.Aşama p i = a 1 + a 2 Z 2i + a 3 Z 3i +……+ a m Z mi +v i (2) RBD = ? 18

20 Breusch – Pagan Testi 4.Aşama 5.Aşama H 0 : a 2 = a 3 =…..=a m = 0 (Eşit varyans) H 1 : En az biri sıfırdan farklıdır. (Farklı varyans) H 0 reddedilir. 19

21 Breusch – Pagan Testi IT: İthalat 20

22 Breusch – Pagan Testi 1.Aşama 2.Aşama 21 pi

23 Breusch – Pagan Testi 3.Aşama RBD = Aşama 5.Aşama H 0 : a 2 = a 3 =…..=a m = 0 (Eşit varyans) H 1 : En az biri sıfırdan farklıdır. (Farklı varyans) H 0 reddedilemez. 22

24 Glejser Farklı Varyans Testi 1.Aşama:Y ile X (veya X’ler) arasındaki ilişki tahmin edilerek, ilgili örnek hata terimleri e’ler bulunur. 2.Aşama:  i 2 ile ilişkili olduğu düşünülen bağımsız değişken için aşağıdaki modeller denenmektedir. 23

25 Glejser Farklı Varyans Testi 3.Aşama:Korelasyon katsayısı ve a’ların standat hata değerlerine göre en uyun model seçilip H 0 : a 2 = 0 H 1 : a 2 ≠ 0 test edilir. 4.Aşama: H 0 kabul edilirse eşit varyans gerçeklemiştir sonucuna varılır. 24

26 Glejser Farklı Varyans Testi 1.Aşama: IT: İthalat 25

27 2.Aşama: Glejser Farklı Varyans Testi 3.Aşama:H 0 : a 2 = 0 H 1 : a 2 ≠ 0 4.Aşama: Prob = > 0.05 H 0 reddedilemez. Eşit varyans gerçekleşmiştir. 26

28 White Testi Y = b 1 + b 2 X 2 + b 3 X 3 + u White Testi için yardımcı regresyon: u 2 = a 1 + a 2 X 2 + a 3 X 3 + a 4 X a 5 X a 6 X 2 X 3 + v R y 2 = ? White Testi Aşamaları: 1.Aşama 2.Aşama  = ? 3.Aşama 4.Aşama H 0 : a 2 = a 3 = a 4 = a 5 = a 6 =0 H 1 : a i ’lerin en az bir tanesi anlamlıdır s.d.= k-1  2 tab =? W= n.R y 2 = ? W >  2 tab H 0 hipotezi reddedilebilir 27

29 White Testi lnMaaş = yıl yıl 2 White Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : a 2 = a 3 = a 4 = a 5 =0 ; H 1 : a i ’lerin en az bir tanesi anlamlıdır s.d.=5-1=4  2 tab = W= n.R y 2 = 222(0.0901)= W >  2 tab H 0 hipotezi reddedilebilir e 2 = Yıl Yıl Yıl Yıl 4 R y 2 =

30 Lagrange Çarpanları(LM) Testi Y = b 1 + b 2 X 2 + b 3 X 3 + u LM testi için yardımcı regresyon: R y 2 = ? LM Testi Aşamaları: 1.Aşama 2.Aşama  = ? 3.Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.= k-1  2 tab =? LM= n.R y 2 = ? LM >  2 tab H 0 hipotezi reddedilebilir 29

31 Lagrange Çarpanları(LM) Testi lnmaaş = yıl yıl 2 LM Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 222(0.0537)= LM >  2 tab H 0 hipotezi reddedilebilir e 2 = lnmaas-tah^2 R y 2 =

32 Ramsey Reset Testi Y = b 1 + b 2 X 2 + b 3 X 3 +…..+b k X k + u i Ramsey Reset testi için yardımcı regresyon: H 0 : a i = 0 (Eşit Varyans) H 1 : a i ≠ 0 (Farklı Varyans) Hipotezler  hata payı ile t tablosundan bulunacak değer ile karşılaştırılır. 1.Aşama: 2.Aşama: 3.Aşama: t hes > t tab H 0 reddedilir. 31

33 Ramsey Reset Testi H 0 : a i = 0 (Eşit Varyans) H 1 : a i ≠ 0 (Farklı Varyans) 1.Aşama: 2.Aşama: 32

34 3.Aşama: t tab = t n-k,  = t 20-3, 0.05 = Ramsey Reset Testi 4.Aşama: t hesap = | | < t tab = H o reddedilemez t hesap = < t tab = H 0 reddedilemez. 33

35 Park Testi  i 2 bilinmediğinden bunun yerine hata kareler toplamı e i 2 kullanılır. 34

36 Park Testi 1.Aşama: 2.Aşama: H 0 :  = 0 (Eşit Varyans) H 0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t hes > t tab H 0 reddedilir. 35

37 Park Testi 1.Aşama: 2.Aşama: H 0 :  = 0 (Eşit Varyans) H 0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t tab = t 18, 0.01 = t hes < t tab H 0 reddedilemez. 36

38 UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile SayısıYXu YXu

39 UYGULAMA: Y i =  0 +  1 X i +  i modeli için sabit varyans varsayımının geçerli olup olmadığını Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile. 38

40 Grafik Yöntem 39

41 Sıra Korelasyonu Testi 1.Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = 0.05 s.d.=? 3.Aşama t tab =? 4.Aşama H 0 hipotezi reddedilebilir t hes > t tab 40

42 Sıra Korelasyonu Testi 1.Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = 0.05 s.d.= 30 t tab = = Aşama H 0 hipotezi reddedilemez. t hes < t tab 41

43 Goldfeld-Quandt Testi c = 32 / 5 = gözlem atılacak. ( gözlemler) 13 gözlemden oluşan iki grup için modeller gözlemler için Y i = X i gözlemler için Y i = X i 42

44 Goldfeld-Quandt Testi 1.Aşama H 0 : Eşit Varyans H 1 : Farklı Varyans 2.Aşama  = Aşama F tab = Aşama H 0 hipotezi reddedilebilir F hes > F tab 43

45 Breusch – Pagan Testi 1.Aşama 2.Aşama 44

46 Breusch – Pagan Testi 3.Aşama RBD = Aşama 5.Aşama H 0 : a 2 = a 3 =…..=a m = 0 (Eşit varyans) H 1 : En az biri sıfırdan farklıdır. (Farklı varyans) H 0 reddedilebilir. 45

47 1.Aşama: Glejser Farklı Varyans Testi 2.Aşama:H 0 : a 2 = 0 H 1 : a 2 ≠ 0 4.Aşama: t hes > t tab H 0 reddedilebilir. Eşit varyans gerçekleşmemiştir. 3.Aşama:  = 0.05 n –k = 32 – 2 =30 t tab =

48 White Testi White Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : a 2 = a 3 = 0 ; H 1 : a i ’lerin en az bir tanesi anlamlıdır s.d.=3-1=2  2 tab =5.99 W= n.R y 2 = 32(0.2296) = W >  2 tab H 0 hipotezi reddedilebilir e 2 = X – X 2 R y 2 =

49 Lagrange Çarpanları(LM) Testi LM Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.201) = LM >  2 tab H 0 hipotezi reddedilebilir R y 2 =

50 Ramsey Reset Testi H 0 : a i = 0 (Eşit Varyans) H 1 : a i ≠ 0 (Farklı Varyans) 1.Aşama: 2.Aşama: 49

51 3.Aşama: t tab = t n-k,  = t 32-3, 0.05 = Ramsey Reset Testi 4.Aşama: t hesap = < t tab = t hesap = |-1.654| < t tab = H 0 reddedilemez. 50

52 Park Testi 1.Aşama: 2.Aşama: H 0 :  = 0 (Eşit Varyans) H 0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t tab = t 32-2=30, 0.05 = t hes < t tab H 0 reddedilemez. 51

53 bilinmemesi durumu Y i = b 1 + b 2 X i + u i

54 UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile SayısıYXu YXu

55 1.HAL: LOGARİTMİK DÖNÜŞÜMLER 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.0178) = LM <  2 tab H 0 hipotezi reddedilemez.

56 2.HAL: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.0509) = LM <  2 tab H 0 hipotezi reddedilemez.

57 3.HAL: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.2365) = LM >  2 tab H 0 hipotezi reddedilebilir.

58 5.HAL: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.0290) = LM <  2 tab H 0 hipotezi reddedilemez.


"Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1." indir ppt

Benzer bir sunumlar


Google Reklamları