Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

DDüzlemde birbirine doğrusal olmayan üç noktayı birleştiren, üç doğru parçasının oluşturduğu çokgendir.  A,B,C şeklide 3 açı(3 köşe) ve a,b,c şeklinde.

Benzer bir sunumlar


... konulu sunumlar: "DDüzlemde birbirine doğrusal olmayan üç noktayı birleştiren, üç doğru parçasının oluşturduğu çokgendir.  A,B,C şeklide 3 açı(3 köşe) ve a,b,c şeklinde."— Sunum transkripti:

1 DDüzlemde birbirine doğrusal olmayan üç noktayı birleştiren, üç doğru parçasının oluşturduğu çokgendir.  A,B,C şeklide 3 açı(3 köşe) ve a,b,c şeklinde 3 kenardan oluşur.

2 Çamaşır askısı Börek Kolye Trafik işareti Okul çantası Muska GÜNÜMÜZDEN ÖRNEKLER

3 1.Kenarlarına Göre Üçgenler  Çeşitkenar üçgen Çeşitkenar üçgen  İkizkenar üçgen İkizkenar üçgen  Eşkenar üçgen Eşkenar üçgen 2.Açılarına Göre Üçgenler  Dar açılı üçgen Dar açılı üçgen  Dik açılı üçgen Dik açılı üçgen  Geniş açılı üçgen Geniş açılı üçgen örnek için tıkla ☺ örnek için tıkla ☺ Üçgenler ikiye ayrılır ÜÇGEN ÇEŞİTLERİ

4 ÇÇeşit Kenar Üçgen: Üçgenin kenarlarının hepsi farklıysa bu üçgene “Çeşit Kenar Üçgen” denir. EEşkenar Üçgen: Üçgenin kenarlarının hepsi eşit olan üçgene “Eşkenar Üçgen” denir. Bir eşkenar üçgenin iç açıları 60º `dir. İİkiz Kenar Üçgen: Üçgenin kenarlarının iki tanesi eşit olan üçgene “İkiz Kenar Üçgen” denir. Bir ikizkenar üçgenin, taban açıların ölçüleri birbirine eşittir.

5 Çeşitkenar Üçgen eşkenar Üçgen İkizkenar Üçgen a b c a a a a a b

6 DDar Açılı Üçgen: Üçgenin açılarından her birinin ölçüsü 90º`den küçük olan üçgene “Dar Açılı Üçgen” denir. GGeniş Açılı Üçgen: Bir açısı geniş açı olan üçgene “Geniş Açılı Üçgen” denir. DDik Açılı Üçgen: Açılarından birisi dik açı olan üçgene “Dik Açılı Üçgen” denir

7 Dar açılı Üçgen Dik ÜçgenGeniş açılı Üçgen < 90° = 90° > 90°

8 1) Üçgenin Yüksekliği: Üçgenin bir köşesinden karşı tarafa indirilen, köşe ile kenar arasında kalan dik doğru parçasına “Üçgenin Yüksekliği” denir.İndiği yerde 90 derecelik açı oluşur.”h” ile gösterilir.Yükseklikler dik üçgenlerde dik açının köşesinde, geniş açılı üçgenlerde ise üçgenin dışında kesişirler. 2.Üçgenin Kenar Ortayları: Üçgenin bir köşe ile bu köşenin karşısındaki kenarın orta noktasını birleştiren doğru parçasına “Üçgenin Kenar Ortayı” denir.Üçgenin iç bölgesinde kalır. “V” ile gösterilir. 3.Üçgenin Açı Ortayı: Üçgenin açılarını iki eş açıya bölen doğru parçasına “Üçgenin Açı Ortayı” denir. ” n ” ile gösterilir. BİR ÜÇGENİN YARDIMCI ELEMANLARI

9

10 ÜÜçgenin Kenarları Arasındaki Bağıntılar B A C a b c │b-c│C’ dir

11 PİSAGOR VE ÖZEL ÜÇGENLER A BC AB ve BC dik kenarlar ve BC hipotenüstür. AB²+ BC²=AC² A BC A BC A BC A BC AB=3 BC=4 AC=5 AB=7 BC=24 AC=25 AB=5 BC=12 AC=13 AB=8 BC=15 AC=17

12 Çeşitkenar üçgende çevre =a+b+c İkizkenar üçgende çevre= a+a+b =2a+b Eşkenar üçgende çevre=a+a+a=3a  Ü Üçgende çevre, üçgenin üç kenarının toplanmasıyla bulunur. ÜÇGENDE ÇEVRE

13 ÜÜçgende alan, bir kenar ve o kenara ait yüksekliğin çarpımı ile bulunur. A B HC h a A(ABC)=(a×h)/2 A(ABC)=(a×ha)/2= (b×hb)2/=(c×hc)/2 A B C a bc ÜÇGENDE ALAN

14 İKİ ÜÇGENİN EŞLİĞİ İİki kenarı ve dahil ettikleri açı karşılıklı eş ise bu üçgenler eştir İİki açısı ve dahil ettikleri kenar karşılıklı eş ise bu üçgenler eştir KKenarları karşılıklı eş ise bu üçgenler eştir İİki açısı ile bunlardan birinin karşısındaki kenar karşılıklı eş ise bu üçgenler eştir. Kenar-Açı-Kenar (KAK) Açı-Kenar-Açı (AKA) Kenar-Kenar-Kenar (KKK) Kenar-Açı-Açı (KAA)

15 İKİ ÜÇGENİN BENZERLİĞİ İİkişer açılarının eş olması durumunda bu üçgenler benzerdir KKarşılıklı kenarlarının orantılı olması durumunda bu üçgenler benzerdir. KKarşılıklı iki kenarının orantılı ve dahil ettikleri açıların eş olması durumunda bu üçgenler benzerdir. Açı-Açı (AA) Kenar-Kenar-Kenar (KKK) Kenar-Açı-Kenar (KAK )

16 A BC 5 D FE 5 m(A)=m(C) m(B)=m(E) m(C)=m(F) │AB│=│DE│ │BC│=│EF│ │AC│=│DF│ ABC ile DEF üçgenleri eştir. ▲ABC≡▲DEF dir

17 3 LM K A B C 6 EF D 12 KLM İle ABC ve DEF üçgenler benzerdir. KLM▲≈ABC▲ ve KLM▲≈DEF▲

18  Üçgenin iki kenar uzunluğunun toplamı veya farkı ile üçüncü kenarının uzunluğu arasındaki ilişkiyi belirler.  Üçgenin kenar uzunlukları ile bu kenarların karşısındaki açıların ölçüleri arasındaki ilişkiyi belirler.  Yeterli sayıda elemanının ölçüleri verilen bir üçgeni çizer.  Üçgende kenarortay, kenar orta dikme, açıortay ve yüksekliği inşa eder.  Üçgenlerde eşlik şartlarını açıklar.  Üçgenlerde benzerlik şartlarını açıklar.  Pythagoras (Pisagor) bağıntısını oluşturur.  Dik üçgendeki dar açıların trigonometrik oranlarını belirler KAZANIMLAR

19  vikipedi vikipedi   MEB ilköğretim 8. sınıf matematik kitabı  8.sınıf matematik defteri  hoca.com  KAYNAKLAR

20 Gizem KUŞÇU İlköğretim Matematik Öğretmenliği 2A(gece) HAZIRLAYAN


"DDüzlemde birbirine doğrusal olmayan üç noktayı birleştiren, üç doğru parçasının oluşturduğu çokgendir.  A,B,C şeklide 3 açı(3 köşe) ve a,b,c şeklinde." indir ppt

Benzer bir sunumlar


Google Reklamları