Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

(1707-1783) EULER Euler 15 nisan 1707 ‘de İsviçre’nin Basel kentinde doğdu.Matematikçi bir ailenin oğlu olarak dünyaya gelen Euler sürekli olarak matematiğin.

Benzer bir sunumlar


... konulu sunumlar: "(1707-1783) EULER Euler 15 nisan 1707 ‘de İsviçre’nin Basel kentinde doğdu.Matematikçi bir ailenin oğlu olarak dünyaya gelen Euler sürekli olarak matematiğin."— Sunum transkripti:

1

2 ( ) EULER

3 Euler 15 nisan 1707 ‘de İsviçre’nin Basel kentinde doğdu.Matematikçi bir ailenin oğlu olarak dünyaya gelen Euler sürekli olarak matematiğin konuşulduğu bir ortamda büyümüştür.

4 Matematiği iyi bilen babasının yetişmesinde önemli bir payı olmuştur.Johann Bernolli’den ders almıştır ve Nicolaus Bernoulli,St. Petersburga gittiğinde Euleri’de beraberinde götürmüştür.

5 Yaşamının önemli bir kısmı burada geçmiştir ve birçok eserini burada yazmıştır.1741’den 1766’ya kadar Berlin akademisinde çalışmıştır.1766’da Çariçe 2. Katerina’nın davetlisi olarak tekrar St. Petersburg’a dönmüştür.Ve ölünceye kadar orada yaşamıştır.

6 Euler 1735 de bir gözünü,1766 da ise diğer gözünü kaybetmesine rağmen çalışmalarını sürdürmüştür.Çünkü olağanüstü bir belleğe sahip olduğu için buluşlarını ara ara yazdırabilmiştir.

7 İki kez evlenmiş ve 13 çocuğu olmuştur.Euler en çok eser bırakan bilim adamı olarak tanınır.Hayattayken 530 kitabı ve makalesi çıkmış, ölümünden sonra ise el yazmalarının yayınlanmasıyla bu sayı 771 ‘e ulaşmıştır.

8 Yaşam süresi boyunca diferansiyel ve integral hesap,geometri,mekanik ve sayılar kuramına büyük katkılar yapmıştır.Astronomi problemlerinin çözümünde ve günlük hayata uygulanmasında önemli çalişmalarda bulunmuştur.

9 Önemli Eserleri Sonsuz küçükler analizine giriş Diferansiyel hesabın ilkeleri Mekanik üzerine inceleme Eş çevreler teorisi Gezegenlerin ve kuyruklu yıldızların hareket teorisi İntegral hesabın ilkeleri

10 Sonsuz küçükler analizine giriş adlı eserinde,sinx,cosx gibi sonsuz seri açılımları, bağıntısı,zeta fonksiyonu ve bunun asal sayı kuramıyla ilişkisi gibi konular bulunmaktadır.Belirsiz denklemlerle ilgili bölümde ‘nın x,y,z tamsayıları ve n=3,n=4 için olanaksız olduğunu kanıtlamıştır.Yukarda yazdığımız formül,formüller arası güzellik yarışmasında birinci seçilmiştir.

11 Geometride üçgenin yüksekliklerinin kesişme noktası yine Euler tarafından bulunmuştur.Trigonometrik fonksiyonların değerlerini geometrik olarak doğruların uzunlukları olarak ifade etmiştir.Mesela bir açının tanjant değeri bu açının karşı kenarının uzunluğunun komşu kenara uzunluğuna oranı eşittir

12 Euler kompleks sayılar ve onların logaritmaları konularında önemli çalışmalar yapmıştır.Euler diferansiyel hesabın ilkeleri kitabında bir kuvvet tarafından yapılan işin belirlenmesi, geometrik problemlerin çözümü gibi bir çok konuda kendi bulup geliştirdiği çok sayıda belirsiz integral alma yöntemi ve türev yöntemlerini kullandı.

13 Bugün bizde benzeri problemlerde aynı yöntemleri kullanıyoruz hem de neredeyse 250 yıl önce Eulerin bulup geliştirdiği biçimiyle. Matematik bilimine uçsuz bucaksız katkılarının yanı sıra aynı zamanda bugünde kullandığımız simgelerin isim babasıdır.Bunlar; pi, e sayısı, i sayısı, f(x) v.b örnek verilebilir

14 Teorem:Tek parça ve düzlemsel bir çizgenin bölge sayısı b, kenar sayısı k, nokta sayısı n ise, b-k+n=2 eşitliği görülür. Örneğin;bir kübün ortasına aynı yönde küçük bir küp yerleştirelim.Büyük kübün köşe noktalarını küçük küp’e eş düşen noktalarla birleştirelim.Küçük kübü büyük kübün ortasındaki bir delik gibi görelim.

15 Bir çizge elde ederiz.Nokta sayısı n=16, kenar sayısı k=32, euler formülünün doğru olması için bölge sayısı 18 olmalıdır

16 Teorem: ıraksak bir seridir.(yani toplam sonsuzdur) Bir başka deyişle, Dizisinin sayılar yeterince uzağa gidildiğinde her sayıdan büyük olur.(p asal)

17 Euler ders verdiği özel birkaç öğrencisiyle Rusya’da matematik öğreniminin kurumlaşmasında önemli katkılar yapmıştır.Üç cisim problemi (hala çözülememiştir) Güneş,Ay ve Dünya’nın birbiriyle etkileşimlerine ilişkin problemi içermesi sebebiyle zor bir konu olan Ay hareketi üzerinde uzun süreler çalışmıştı. 1753’te önerdiği kısmi bir çözüm yayımladı.1772’de Ay hareketi üzerine yayımladığı ikinci kuramının karmaşık tüm hesaplarını kafasında hesaplaması, kör geçirdiği son yıllarının en önemli başarılarındandır.

18 Noktalı Euler Çizgeleri

19 Çizge kuramını bilinen en eski sorusu ‘Königsberg köprü problemi’ dir.Königsberg ‘deki Pregel nehrinin ve karalar arasında geçişi sağlayan yedi köprünün planını görüyoruz.Bu yedi köprünün her birinden sadece bir kez geçecek bir yolculuk mümkün müdür?

20 Euler 1736’da bunun mümkün olmadığını göstermiştir.Kara parçalarını dört noktayla,yedi köprüyü de bu noktalar arasına koyacağımız kenarlarla gösterirsek yandaki çizgeyi elde ederiz.Her köprüden tam bir kez geçmek demek, yandaki çizgenin her kenarından tam bir kez geçecek bir yolculuk bulmak demektir.Bu olaya Euler Turu denir.

21 Euler, böyle parlak, başarı ve yaratıcılık dolu bir yaşamının ardından 18 eylül 1783’de Petersburg’ta öldü.Ama geriye öyle bir miras bıraktı ki, eminim ismi insanlık tarihi sona erinceye dek tekrarlanacaktır.

22 KAYNAKLAR Matematik Dünyası Dergisi

23 ESRA ÖZDEMİR


"(1707-1783) EULER Euler 15 nisan 1707 ‘de İsviçre’nin Basel kentinde doğdu.Matematikçi bir ailenin oğlu olarak dünyaya gelen Euler sürekli olarak matematiğin." indir ppt

Benzer bir sunumlar


Google Reklamları