Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

BANU MUSA (Musa’nın Oğulları) (800 - 875) Kaynaklar, Muhammed Ahmed ve Hasan adındaki bu ünlü matematikçi kardeşlerden Musa’nın oğulları olarak bahsetmektedir.

Benzer bir sunumlar


... konulu sunumlar: "BANU MUSA (Musa’nın Oğulları) (800 - 875) Kaynaklar, Muhammed Ahmed ve Hasan adındaki bu ünlü matematikçi kardeşlerden Musa’nın oğulları olarak bahsetmektedir."— Sunum transkripti:

1 BANU MUSA (Musa’nın Oğulları) ( ) Kaynaklar, Muhammed Ahmed ve Hasan adındaki bu ünlü matematikçi kardeşlerden Musa’nın oğulları olarak bahsetmektedir. Arapça Banu Musa bu anlamda kullanılmaktadır. Halife Memun bu çocukların matematiğe karşı olan yeteneklerini keşfetmiş ve onları Darül-Hikme’ye kaydetmiştir. Harizmi’nin yanında yetişen kardeşler kısa zamanda Darül-Hikme’nin en parlak öğrencileri oldular. Matematik, astronomi ve mekanik alanında başarılı çalışmalar yaptılar. Harizmi ile birlikte çalışmalarına rağmen onlar cebir yerine geometri ile daha çok ilgilendiler. Bağdat döneminin ilk yıllarında yapılan bir çok çalışmada bu kardeşlerin emekleri olduğu bilinmektedir. Kendi adlarıyla anılan en tanınmış eserleri "Düzlem ve Küresel Yüzeyde Şekillerin Ölçülmesi "adlı geometri kitabıdır. Bu eserin orijinal yazmaları Oxford, Paris, Berlin ve İstanbul’da mevcuttur. Bu eser 13. asırda yine ünlü bir matematikçi ve astronom olan Tusi tarafından yeniden açıklanarak kaleme alındı.

2 Archimedes geometrik cisimlerin hacimlerini yine geometrik cisimlerin hacimleri ile karşılaştırarak ifade etmiştir. Kürenin hacminin koninin hacminin dört katı olduğu gibi. Bu karşılaştırmada koninin yüksekliği kürenin yarıçapına eşit alındığında söz konusudur. Musa oğulları ise yaptıkları hesaplamalarda hacimlere doğrudan sayılar karşılık gelmektedir. Örneğin, kürenin hacmi küre yüzeyinin alanı ile kürenin yarıçapın çarpımının üçte birine eşittir. Archimedes’in yaklaşım yöntemiyle ispatladığı “kürenin yüzey alanının büyük çemberin alanının dört katıdır” önermesini farklı bir şekilde ispatladılar. A = 4 C olduğunu gösterdiler. Burada A kürenin yüzey alanı C de çemberin alanını göstermektedir. Bu gün bunu kolaylıkla belirli integral ile gösterebiliriz:.

3 Musa oğulları, Archimedes’in, aralığı ile sınırlandırdığı sayısının daha da küçültülebileceğini göstermişlerdir. Musa oğulları Archimedes’in kaybolan kitabında yer aldığı söylenen ancak Hero’nun “Metrikler” kitabında ilk defa yer alan bir üçgenin kenar uzunluklarına bağlı olarak alanının hesaplanması formülünün ispatını geometrik yoldan yaptılar. p çevre/2, a, b, c üçgenin kenarları olmak üzere şeklinde formülleştirdiler.

4 Düzlem ve Küresel Yüzeyde Şekillerin Ölçülmesi kitabında kardeşler cebirsel denklemleri de çözdüler. Örneğin, a ve b verilmiş olsun, x ve y bilinmeyenlerini bulunuz öyle ki a/x = x/y = y/b dir. Çözümde üç eğri yüzeyinin kesişiminden yararlandılar. Bugünkü gösterimlerle; silindir için x 2 + y 2 = ax, koni için b 2 (x 2 + y 2 + z 2 ) = a 2 x 2 ve tor için x 2 + y 2 + z 2 = a(x 2 + y 2 ) 1/2 denklemlerini kullandılar.

5 Kardeşler yine aynı eserlerinde öteden beri matematikçilerin uğraştığı bir açının üçe bölünmesi problemini kendi yöntemleri ve geliştirdikleri aletlerle çözmüşlerdir. Musa oğulları yaptıkları çalışmalarla Yunan matematiğinin yeniden canlanmasına ve İslam Dünyasına yayılmasına katkıda bulunmuşlardır. Yapmış oldukları orijinal çalışmalar kendilerinden sonra gelen Ömer Hayyam ve Fibonacci gibi matematikçileri de etkilemiştir.

6 Abu KAMİL ( ) Abu Kamil, Harizmi'den sonra gelen en büyük Müslüman matematikçilerden biridir. Mısırlı olduğu bilinen bu matematikçiyi daha çok Ibn Haldun’dan ve ‘‘Kitab al taraif fil hisab" adlı meşhur kitabından tanımaktayız. Abu Kamil, Harizmi’nin çalışmalarına benzer şekilde bazı problemleri cebirsel yollarla çözdü. Diophantus’un denklem çözümleri rasyonel çözümler olmasına karşın Abu Kamilin denklem çözümleri daha çok düzenli ve sistematik işlemler içermektedir. Abu Kamil’in bir başka kitabı da çokgenler üzerinedir. Bu kitapta dördüncü dereceden denklemlerin çözümleri olduğu gibi irrasyonel katsayıları olan karışık ikinci derece denklemler de yer almaktadır. Bu kitabın büyük bir kısmı İtalyan matematikçi Leonardo Fibinacci ( ) tarafından “Practica Geometria” adlı kitabında kullanıldı.

7 “Kitab fil cabr Wa’l Muqabalah” adlı kitabındaki bir çok problem daha önce Harizmi tarafından çözülmüştür. Ancak burada orijinal olan nokta bazı çözümleri Abu Kamil x’i bulmadan x 2 yi bularak vermiştir. Abu Kamil’in Harizmi’ye karşı en önemli üstünlüğü çözdüğü denklemlerde irrasyonel katsayıları kullanmasıdır. Euclid, x 2 +q=px şeklindeki denklemleri x’in den küçük olması durumunda çözmüştü. Abu Kamil ise bu tipten denklemleri x’in den büyük olması durumlarında da çözmüştür. Kamil x 2 den büyük kuvvetleri ilk defa kullanan Müslüman matematikçidir. Örneğin, (x 8 )’i x 2. x 2. x 2. x 2 şeklinde düşünerek kare-kare-kare-kare biçiminde, (x 6 )’yı da küp-küp şeklinde ifade etmiştir.

8 Yine modern gösterimlerle göstereceğimiz bazı denklemleri Abu Kamil “Kitab fil cabr Wa’l Muqabalah” adlı kitabında çözmüştür.

9 Abu Kamil’in çalışmaları Al Karaji ve Leonardo Fibinacci’yi etkilediği kolayca söylenebilir, çünkü bu matematikçiler bir çok çözümlerini doğrudan Abu Kamil’in çözümü olarak kullandılar. Özetle, Abu Kamil ile birlikte matematiksel soyutlama, pratik matematiksel yöntemlerle ele alındı, irdelendi böylece cebirin formal gelişmesinin temelleri atılmış oldu.


"BANU MUSA (Musa’nın Oğulları) (800 - 875) Kaynaklar, Muhammed Ahmed ve Hasan adındaki bu ünlü matematikçi kardeşlerden Musa’nın oğulları olarak bahsetmektedir." indir ppt

Benzer bir sunumlar


Google Reklamları