…ÇOKLU REGRESYON MODELİ…

Slides:



Advertisements
Benzer bir sunumlar
ÇOKLU REGRESYON MODELİ
Advertisements

Tüketim Gelir
Sabit Terimsiz Bağlanım Modeli
…ÇOKLU REGRESYON MODELİ…
Hâsılat kavramları Firmaların kârı maksimize ettikleri varsayılır. Kâr toplam hâsılat ile toplam maliyet arasındaki farktır. Kârı analiz etmek için hâsılat.
İŞLE 524 – İŞLE 531 Yönetim Muhasebesi
Önem Testleri. Örnekleme yoluyla sağlanan bilgiden hareketle; Kliniklerde hasta hayvanlara uygulanan yeni bir tedavi yönteminin eskisine kıyasla bir farklılık.
2 Yatırım Karlılık Analizleri Finansal Analizler Basit Yöntemler İndirgenmiş Yöntemler Karlılık Yöntemi Geri Ödeme Süresi Yöntemi Net Bugünkü Değer Yöntemi.
Merkezi Eğilim Ölçüleri (Ortalamalar)
HİPOTEZ TESTLERİNE GİRİŞ 1. Şu ana kadar örneklemden elde edilmiş istatistiklerden yararlanarak, kitle parametresini kestirebilmek için nokta tahmini.
Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ
Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri Mann-Whitney U testi Wilcoxon İşaretli Sıra testi BBY252 Araştırma.
OLASILIK TEOREMLERİ Permütasyon
MATEMATİK PROJE ÖDEVİ Adı-Soyadı:Nihat ELÇİ Sınıfı-Numarası:7/C 1057
ÖRNEKLEME YÖNTEMLERİ ve
HİPOTEZ TESTLERİNE GİRİŞ Şu ana kadar örneklemden elde edilmiş istatistiklerden yararlanarak, kitle parametresini kestirebilmek için nokta tahmini.
ÖZEL TANIMLI FONKSİYONLAR
OLASILIK ve İSTATİSTİK
Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı.
Istatistik I Fırat Emir.
İÇİNDEKİLER NEGATİF ÜS ÜSSÜ SAYILARIN ÖZELLİKLERİ
HİPOTEZ TESTLERİ VE Kİ-KARE ANALİZİ
İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ
T- Testİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ
Basit ve Kısmi Korelasyon Dr. Emine Cabı
Hatalarda Normal Dağılım
ÖRNEKLEME.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Kİ-KARE DAĞILIMI VE TESTİ
1. Bernoulli Dağılımı Bernoulli dağılımı rassal bir deneyin sadece iyi- kötü, olumlu-olumsuz, başarılı-başarısız, kusurlu-kusursuz gibi sadece iki sonucu.
İSTATİSTİK II Hipotez Testleri - 2.
Yapay Sinir Ağı Modeli (öğretmenli öğrenme) Çok Katmanlı Algılayıcı
Öğr. Gör. Mehmet Ali ZENGİN
MODEL YETERSİZLİKLERİNİ DÜZELTMEK İÇİN DÖNÜŞÜMLER VE AĞIRLIKLANDIRMA
ÖZDEŞLİKLER- ÇARPANLARA AYIRMA
DOĞAL SAYILAR TAM SAYILAR
Ünite 9: Korelasyon Öğr. Elemanı: Dr. M. Cumhur AKBULUT.
Kütle ortalamasının (µ) testi
MAT – 101 Temel Matematik Mustafa Sezer PEHLİVAN *
MAT – 101 Temel Matematik Mustafa Sezer PEHLİVAN *
TANIMLAYICI İSTATİSTİKLER
Mutlak Dağılım Ölçüleri Nispi Dağılım Ölçüleri
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
KORELASYON VE DOGRUSAL REGRESYON
İSTATİSTİK Yrd. Doç. Dr. Cumhur TÜRK
PARAMETRİK HİPOTEZ TESTLERİ
Dr. İLKER YAKIN & Dr. HASAN TINMAZ
BENZETİM Prof.Dr.Berna Dengiz 13. Ders Çıktı Analizi
Tüketim Gelir
ÖLÇEKLER ÖLÇMEDE HATA KORELASYON
B- Yaygınlık Ölçüleri Standart Sapma ve Varyans Değişim Katsayısı
İSTATİSTİK II Varyans Analizi.
İletişim Fakültesi Bilişim A.B.D.
8.Hafta ANCOVA Kovaryans Analizi
Ölçme Sonuçları Üzerinde Test ve Madde İstatistiklerini Hesaplama
NİŞANTAŞI ÜNİVERSİTESİ
HİPOTEZ TESTLERİ.
Tam Logaritmik Fonksiyon
NİŞANTAŞI ÜNİVERSİTESİ
Veri ve Türleri Araştırma amacına uygun gözlenen ve kaydedilen değişken ya da değişkenlere veri denir. Olgusal Veriler Yargısal Veriler.
Bağımlı Kukla Değişkenler
DAVRANIŞ BİLİMLERİNDE İLERİ İSTATİSTİK DOKTORA
Kesikli Olay benzetimi Bileşenleri
RASTGELE DEĞİŞKENLER Herhangi bir özellik bakımından birimlerin almış oldukları farklı değerlere değişken denir. Rastgele değişken ise tanım aralığında.
Bilimsel Araştırma Yöntemleri
Prof. Dr. Halil İbrahim Karakaş
Kararların Modellenmesi ve Analizi Ders Notu III
YRD. DOÇ. DR. OKTAY KIZILKAYA
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
Sunum transkripti:

…ÇOKLU REGRESYON MODELİ… Bir bağımlı değişkene etki eden çok sayıda bağımsız değişkeni analize dahil ederek çoklu regresyon modeli uygulanabilir. Y=b1 + b2 X2 + b3 X3 + u Y=b1 + b2 X2 + b3 X3 +...+ bk Xk + u EKKY varsayımları çoklu regresyon analizinde de geçerlidir.

…ÇOKLU REGRESYON MODELİ… Tütün Miktarı Gelir Fiyat 59.20 65.40 62.30 64.70 67.40 64.40 68.00 73.40 75.70 70.70 76.2 91.7 106.7 111.6 119.0 129.2 143.4 159.6 180.00 193.0 23.50 24.40 32.10 32.40 31.10 34.10 35.30 38.70 39.60 46.70

…ÖRNEK REGRESYON DENKLEMİ… Katsayıların Tahmini Normal Denklemler ile, Ortalamadan Farklar ile,

…NORMAL DENKLEMLER… Tahminler, hataların kareleri toplamının minimuma indirilmesiyle bulunur: İfadesini minimize eden parametre tahmincilerinin değerlerini bulabilmek için eşitliğin b1,b2 ve b3 ‘e göre türevleri alınıp 0’a eşitlenir.

…NORMAL DENKLEMLER… SY=? , n , SX2=? , SX3=? ,SYX2= ? , SYX3= ?, SX2X3= ? , SX22=? , SX32=?

Tütün Miktarı Y Gelir X2 Fiyat X3 YX2 YX3 59.20 65.40 62.30 64.70 67.40 64.40 68.00 73.40 75.70 70.70 76.2 91.7 106.7 111.6 119.0 129.2 143.4 159.6 180.0 193.0 23.50 24.40 32.10 32.40 31.10 34.10 35.30 38.70 39.60 46.70 4511.04 5997.18 6647.41 7220.52 8020.60 8320.48 9751.20 11714.6 13626.0 13645.1 1391.20 1595.76 1999.83 2096.28 2096.14 2196.04 2400.40 2840.58 2997.72 3301.69 SY=671.20 SX2=1310.40 SX3=337.90 SYX2=89454.17 SYX2=22915.64

X2X3 X22 X32 1790.70 2237.48 3425.07 3615.84 3700.90 4405.72 5062.02 6176.52 7128.00 9013.10 5806.44 8408.89 11384.89 12454.56 14161.00 16692.64 20563.56 25472.16 32400.00 37249.00 552.2 595.3 1030.41 1049.76 967.2 1162.81 1246.09 1497.69 1568.16 2180.89 SX2X3=46555.35 SX22=184593.14 SX32=22915.64

…NORMAL DENKLEMLER…

…NORMAL DENKLEMLER… -131.04/

…NORMAL DENKLEMLER… -33.79/

…NORMAL DENKLEMLER… -5.26 /

…NORMAL DENKLEMLER…

…NORMAL DENKLEMLER…

…ÖRNEK REGRESYON DENKLEMİ…

…ORTALAMADAN FARKLAR YOLUYLA… y=? , x2=?, x3=? Syx2=?, Syx3=?, Sx2x3=?, Sx22=?, Sx32=?

…ORTALAMADAN FARKLAR… Tütün Miktarı Y Gelir X2 Fiyat X3 y x2 x3 59.20 65.40 62.30 64.70 67.40 64.40 68.00 73.40 75.70 70.70 76.2 91.7 106.7 111.6 119.0 129.20 143.4 159.6 180.0 193.0 23.50 24.40 32.10 32.40 31.10 34.10 35.30 38.70 39.60 46.70 -7.92 -1.72 -4.82 -2.42 0.28 -2.72 0.88 6.28 8.58 3.58 -54.84 -39.34 -24.34 -19.44 -12.04 -1.84 12.36 28.56 48.96 61.96 -10.29 -9.39 -1.69 -1.39 -2.69 0.31 1.51 4.91 5.81 12.91 SY=671.20 SX2=1310.40 SX3=337.90

…ORTALAMADAN FARKLAR… yx2 yx3 x2x3 x22 x32 Syx3=235.79 434.3 67.66 117.3 47.04 -3.37 5.00 10.88 179.3 420.0 221.8 81.50 16.15 8.15 3.36 -0.75 -0.84 1.33 30.83 49.85 46.22 564.3 369.4 41.13 27.02 32.39 -0.57 18.66 140.2 284.4 799.9 Syx2=1500.12 Sx2x3=2276.93 3007.43 1547.64 592.4 377.9 144.9 3.39 152.7 815.6 2397.08 3839.04 Sx22=12878.32 Sx32 =432.99 105.8 88.17 2.86 1.93 7.24 0.10 2.28 24.11 33.76 166.67

…ORTALAMADAN FARKLAR… -5.26 /

…ORTALAMADAN FARKLAR…

…ORTALAMADAN FARKLAR…

…ÖRNEK REGRESYON DENKLEMİ… Fiyat Gelir Tütün miktarı

…ELASTİKİYETLERİN HESAPLANMASI… Nokta Elastikiyet Ortalama Elastikiyet

…NOKTA ELASTİKİYET… X30 = 38 X20 = 140

…NOKTA ELASTİKİYET… 0.62 Tütünün gelir elastikiyeti

…NOKTA ELASTİKİYET… -0.57 Tütünün fiyat elastikiyeti

…ORTALAMA ELASTİKİYET… = 0.57 = -0.49

…ÖRNEK REGRESYON DENKLEMİ…

…ÇOKLU REGRESYON MODELİNDE TAHMİNİN STANDART HATASI…

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ… 1) Tek açıklayıcı değişkenli model 2) İki açıklayıcı değişkenli model Bu ifadeler determinantla şöyle yazılabilir.

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ… Sapmalar biçiminde yazılmış iki açıklayıcı değişkenli modelin normal denklemleri şöyledir. (1) (2) Parantez içindeki terimler, örnek gözlemlerinden hesaplanmış determinantlardır ise bilinmeyenlerdir.

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ… (1) ve (2) nolu denklemin sağ tarafında yer alan bilinenler, determinant kalıbında yazılabilir. Her bir parametrenin varyansı, bu parametreye ilişkin minör determinantının (bütün) determinanta bölümünün İle çarpımıdır. Yani…

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ… (1) (2) Ve.. için

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ… için

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ… 3) Üç açıklayıcı değişkenli model Normal denklemin sağ tarafında görülen bilinen terimlerin determinantı şöyledir:

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ… Daha önce iki açıklayıcı değişkenli model için açıklanan işlemleri burada da yenilersek varyansları determinant cinsinden şöyle yazabiliriz. için:

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ…

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ…

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ… Katsayı tahminlerinin varyanslarını gösteren daha önceki ifadeler incelenecek olursa, şu genelleme yapılabilir. k sayıda açıklayıcı değişken içeren bir modelin tahminlerinin varyansı iki determinantın birbirine oranından hesaplanabilir.

…VARYANS FORMÜLLERİNİN GENELLEŞTİRİLMESİ… Örneğin nın varyansı aşağıdaki ifadedir.

e e2 …Çoklu Regresyon Modelinde Tahminin Standart Hatası… Tütün Y Gelir X2 Fiyat X3 e e2 -2.10 0.49 0.58 1.85 1.14 -1.88 -1.22 2.82 0.09 -1.73 59.20 65.40 62.30 64.70 67.40 64.40 68.00 73.40 75.70 70.70 76.2 91.7 106.7 111.6 119.0 129.2 143.4 159.6 180.0 193.0 23.50 24.40 32.10 32.40 31.10 34.10 35.30 38.70 39.60 46.70 61.30455 64.91151 61.72264 62.84776 66.26159 66.28019 69.21737 70.58173 75.60724 72.42623 4.429131 0.238622 0.333345 3.430793 1.295977 3.535114 1.48199 7.942646 0.008604 2.97987 SY=671.20 Se = 0.040 Se2 = 25.68

…Çoklu Regresyon Modelinde Tahmincilerin Standart Hataları… =1.9154 =0.0637

…Çoklu Regresyon Modelinde Tahmincilerin Standart Hataları… =0.3473

…Çoklu Belirlilik Katsayısı… = 0.8879  0.89 = 0.8879  0.89 = 0.11

…Düzeltilmiş Belirlilik Katsayısı… R2 değeri yeni bağımsız değişken eklendiğinde daima artar, R2 de payın değeri artarken payda aynı kalır. Bu sakıncayı ortadan kaldırabilmek için aşağıdaki düzeltilmiş belirlilik katsayısı hesaplanabilir: = 0.86 Çoklu korelasyon katsayısı (R) : Y bağımlı değişkeni ile X bağımsız değişkenleri arasındaki ilişkinin derecesini göstermektedir.

…Basit Korelasyon Katsayıları… = 0.8737 = 0.7490 = 0.9642 = 0.9642

…Kısmi Korelasyon Katsayıları… İfadenin her iki yanı bölünürse

…Kısmi Korelasyon Katsayıları… X2’nin Y’ye Dolaylı Etkisi X2’nin Y’ye Toplam Etkisi X2’nin Y’ye Doğrudan Etkisi = -

…Kısmi Korelasyon Katsayıları… =0.8623 = -0.7242 =0.9612

…Kısmi Regresyon Parametrelerinin Ayrı Ayrı Testi… 1.Aşama H0: b2 = 0 H1: b2  0 2.Aşama a = ? = 0.05 ; S.d.=? = n-k =10-3 = 7 ta,sd =? t0.05,7=? =2.365 3.Aşama =4.5447 4.Aşama |thes= 4.5447 | > |ttab= 2.365 | H0 hipotezi reddedilebilir

…Kısmi Regresyon Parametrelerinin Ayrı Ayrı Testi… 1.Aşama H0: b3 = 0 H1: b3  0 2.Aşama a = ? = 0.05 ; S.d.=? = n-k =10-3 = 7 ta,sd =? t0.05,7=? =2.365 3.Aşama =-2.8163 4.Aşama |thes=- 2.8163 | > |ttab= 2.365| H0 hipotezi reddedilebilir

…Regresyon Parametrelerinin Topluca Testi… Y=b1 + b2 X2 + b3 X3 + u (Sınırlandırılmamış Model)(SM) (SR) (Sınırlandırılmış Model)(SR) Y=b1 + u 1.Aşama H0: b2 = b3 = 0 H1: bi  0 2.Aşama a = ? = 0.05 ; f1=? = k-1 = 3-1=2 f2=? = n-k =10-3=7 Fa,f1,f2 =? F0.05,2,7=? =4.74

…Regresyon Parametrelerinin Topluca Testi… 3.Aşama =27.7221 4.Aşama Fhes= 27.7221 > Ftab= 4.74 H0 hipotezi reddedilebilir

…Varyans Analiz Tablosu… Değişkenlik SKT sd SKTO Fhes F-Anlamlılık RBD HBD TD 203.2235 3-1 101.6117 27.7060 [0.0005] 25.6725 10-3 3.6675 228.8960 10-1

…Güven Aralıkları… = 0.2895  2.365 (0.0637) 0.1370 < b2 < 0.4381 = -0.9781  2.365 (0.3473) -1.7887 < b3 < -0.1466

Sıfır Noktasından Geçen Bağlanım Model Örnekleri İmalat Sanayi Mamülleri Üretim Fonksiyonları Üretim faktörleri girdileri sıfırken çıktı yani üretim de sıfır olmalıdır. Orijinden Geçen Uzun Dönem Tüketim Fonksiyonu b1 sabitinin pozitif değeri bize ekonomik birimlerin gelir seviyeleri sıfırken daha önce yaptıkları tasarrufları tükettiklerini ve daha önceki dönemlerde üretilmiş mallardan faydalandıklarını ifade etmektedir. Kapalı bir ekonominin daha önce ürettiği tüketim malları stoku yoksa, b1 değeri sıfırdan büyük olamaz. Bu halde gelir seviyesi sıfıra indiğinde tüketim geliri aşacak, bu da negatif bir tasarrufa karşılık gelecektir.

Sıfır Noktasından Geçen Bağlanım Model Örnekleri Gelirden bağımsız ve kısıtlanması mümkün olmayan tüketim seviyesi b1'e bağımsız tüketim harcamaları denir. Bu durum kısa dönemde söz konusu olur. Buna karşılık, daha önceki birikmiş tasarruflara bağlı olarak belli bir tüketim seviyesi b1 in varlığının kabulünün uzun dönemde hiç bir anlamı olmaz.

Çizelge:Türkiye'de Sabit Sermaye Oluşumu ve GSYH (1987-2000) Yıl GSSSO GSYH   (milyon TL) (milyar TL) 1987 18.491 74.416 0.018491 0.074416 1988 18.299 76.143 0.018299 0.076143 1989 18.701 76.364 0.018701 0.076364 1990 21.67 83.371 0.02167 0.083371 1991 21.764 84.271 0.021764 0.084271 1992 23.147 88.893 0.023147 0.088893 1993 29.247 96.391 0.029247 0.096391 1994 24.577 91.6 0.024577 0.0916 1995 26.823 97.729 0.026823 0.097729 1996 30.598 104.94 0.030598 0.10494 1997 35.137 112.892 0.035137 0.112892 1998 33.768 116.541 0.033768 0.116541 1999 28.473 111.083 0.028473 0.111083 2000 33.281 119.147 0.033281 0.119147

…DOĞRUSAL OLMAYAN REGRESYON MODELLERİ… Tam Logaritmik Modeller Yarı-Logaritmik Model *Log-Doğ Model(Üstel Model) Doğrusal Eğilim Modeli *Yarı-Logaritmik Model Doğ - Log Model Polinomial Model Evrik Model Log Evrik Model

…Tam Logaritmik Model(Üslü model-log-log Modeller-Sabit Elastikiyetli Modeller)… veya

Y’nin eşiti üstteki denklemde yerine konursa Y’nin X’e göre elastikiyeti

…Tam Logaritmik Model… X3 X2 Y X2 b2>1 0<b2<1 Y2 b2<0 Y1 (X3 sabit tutulduğunda)

…Tam Logaritmik Model… Birden fazla bağımsız değişken olduğunda lnY =lnb1 + b2 lnX2+ b3 lnX3 + ... + bk lnXk + u lne Y* =b1 *+ b2 X2*+ b3 X3* + ... + bk Xk* + u

Y

Uygulama 4.3 (207-210)

Uygulama 4.3 (207-210)

Uygulama 4.3 (207-210)

Uygulama 4.3 (207-210) = 4.0458 = 4.9615 Sx*2 =7.3986 Sy*x* =2.6911

Uygulama 4.3 (207-210) = 0.3637 = 4.0458 - (0.3637) 4.9615 = 2.2413 [ln(9.4046) = 2.2413]

…Üretim Fonksiyonu… Y= Üretim X2=Emek ; X3=Sermaye = Emeğin Marjinal Verimliliği = Sermayenin Marjinal Verimliliği lnY = -3.4485 + 1.5255 lnX2 + 0.4858 lnX3 (t) (-1.43) (2.87) (4.82) n=15 Düz-R2= 0.8738

…Yarı-Logaritmik Model… Log-Doğ Model(Üstel Model)

…Yarı-Logaritmik Fonksiyon… Log-Doğ Model(Üstel Model) lnY = b1 +b2 X+ u = ( b2Y ) = b2 X

Ücret Modeli Log-Doğ Model(Üstel Model) Aşağıdaki ücret modeli Uygulama 9.3’den alınmıştır.(s.427) Modelde: Y:Haftalık Kazanç ($) ; X2: Tecrübe ; X3 : Eğitim Kategorisi lnY = 1.19 + 0.033 X2 + 0.074 X3

Artış Hızı Modeli Log-Doğ Model(Üstel Model) lnY = b1 +b2 t + u r = (Antilog b2 - 1) . 100 r: yıllık ortalama artış(azalış) hızı Y= İş hacmi(1983-1988) r = (Antilog 0.131 - 1) . 100 = (1.13997 - 1) . 100 = (0.139971) . 100 = % 14

Örnek 1969-1983 yıllarına ait GSMH verileri aşağıdadır. Buna göre büyüme hızını bulunuz. Y t logY logY*t t2 Ytahmin e obs GSMH YIL LOGGSMH LOGGSMH_YIL YILKARE YTAHMIN HATA 1969 1088.000 1.000000 6.992096 6.990414 0.001682 1970 1086.000 2.000000 6.990257 13.98051 4.000000 7.017268 -0.027012 1971 1122.000 3.000000 7.022868 21.06860 9.000000 7.044122 -0.021254 1972 1186.000 7.078342 28.31337 16.00000 7.070976 0.007365 1973 1254.000 5.000000 7.134094 35.67047 25.00000 7.097830 0.036263 1974 1246.000 6.000000 7.127694 42.76616 36.00000 7.124685 0.003009 1975 1231.000 7.000000 7.115582 49.80907 49.00000 7.151539 -0.035957 1976 1298.000 8.000000 7.168580 57.34864 64.00000 7.178393 -0.009813 1977 1370.000 7.222566 65.00309 81.00000 7.205247 0.017319 1978 1438.000 10.00000 7.271009 72.71009 100.0000 7.232101 0.038907 1979 1479.000 11.00000 7.299121 80.29034 121.0000 7.258955 0.040166 1980 1475.000 12.00000 7.296413 87.55696 144.0000 7.285809 0.010604 1981 1512.000 13.00000 7.321189 95.17545 169.0000 7.312663 0.008525 1982 1480.000 14.00000 7.299797 102.1972 196.0000 7.339518 -0.039720 1983 1535.000 15.00000 7.336286 110.0443 225.0000 7.366372 -0.030086

lnY = b1 +b2 t + u LOG(GSMH)= 6.963560+ 0.026854YIL Prob (0.0000) (0.0000) = (Antilog b2 - 1) . 100 r = (Antilog 0.02685- 1) . 100

…Yarı-Logaritmik Fonksiyon… Doğ - Log Model Y = b1 +b2 lnX+ u

…Yarı-Logaritmik Fonksiyon… Doğ - Log Model Y = b1 +b2 lnX+ u

Polinomial Fonksiyonlar Y = b1 + b2 X + b3 X2 + b4 X3 + ... + bk+1 Xk + u Kuadratik Model: Y = b1 + b2 X + b3 X2 + u = b2 + 2b3 X = 0  X0= -b2 / 2b3 Eğer b3<0 ise X0 noktası maksimumdur = 2b3 Eğer b3>0 ise X0 noktası minimumdur

Polinomial Fonksiyonlar Kuadratik Model OM= Ortalama Maliyet ; Çıktı =Üretimİndeksi GMİ= Girdi Maliyetleri İndeksi OM = 10.52 - 0.175 Çıktı + 0.0009 (Çıktı)2 + 0.02 GMİ (t) (14.3) (-9.7) (7.8) (14.45) Düz-R2=0.978 sd=16

Polinomial Fonksiyonlar Kübik Model TM= Toplam Maliyet ;Q =Üretim Miktarı

Polinomial Fonksiyonlar Kübik Model Y = b1 + b2 X + b3 X2 + b4 X3 + u TM = 141.76 + 63.47 Q - 12.96 Q2 + 0.94 Q3 s(bi) (6.37) (4.78) (0.98) (0.059) R2 =0.998 sd=6

Ters Model Ve Logaritmalı Ters Model

En Yüksek Olabilirlik Yöntemi İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. Basit(sıradan) en küçük kareler yöntemi, özünde olasılık dağılımları ile ilgili herhangi bir varsayım içermez. Bu yüzden, çıkarsama yapmada BEK tek başına bir işe yaramaz. BEK, genel bir tahmin yaklaşımından çok regresyon doğrularını bulmada kullanılabilecek bir hesaplama yöntemi olarak görülmelidir.

BEK yönteminden daha güçlü kuramsal özellikler gösteren bir başka nokta tahmincisi EYO, yani “en yüksek olabilirlik” (maximum likelihood) yöntemidir. En yüksek olabilirlik yönteminin ardında yatan temel ilke şu beklentidir: “Rassal bir olayın gerçekleşmesi, o olayın, gerçekleşme olasılığının en yüksek olay olmasındandır.” Bu yöntem, 1920’li yıllarda˙Ingiliz istatistikçi Sir Ronald A. Fisher (1890-1962) tarafından bulunmuştur. Ki-kare testi, bayesgil yöntemler ve çeşitli ölçüt modelleri gibi birçok istatistiksel çıkarım yöntemi, temelde EYO yaklaşımına dayanmaktadır.

EYO yöntemini anlayabilmek için, elimizde dağılım katsayıları bilinen farklı anakütleler ve rassal olarak belirlenmiş bir örneklem olduğunu varsayalım: Bu örneklemin farklı anakütlelerden gelme olasılığı farklı ve bazı ana kütlelerden gelme olasılığı diğerlerine göre daha yüksektir. Elimizdeki örneklem, eğer bu anakütlelerden birinden alınmışsa, “alınma olasılığı en yüksek anakütleden alınmış olmalıdır” diye düşünülebilir.

Kısaca: 1. Anakütlenin olasılık dağılımı belirlenir veya bu yönde bir varsayımda bulunulur. 2. Eldeki örneklem verilerinin, hangi katsayılara sahip anakütleden gelmiş olma olasılığının en yüksek olduğu bulunur. YALTA (2007 – 2008 Ders Notları)

Regresyon Katsayılarının En Yüksek Olabilirlik Tahminleri X Y Xi b1 b1 + b2Xi Y = b1 + b2X Y = b1 + b 2X + u modelinde katsayıların en yüksek olabilirlik tahminleri yapılmadan önce modelde hata terimi olmadığını ifade edelim. Nokta ile gösterilen yerde Y değerine karşılık gelen X değerinin Xi değerine eşit olduğu görülmektedir.

X Y Xi b1 b1 + b2Xi Y = b1 + b2X Eğer modele hata terimini eklersek hataların belli bir ortalama ve varyansa bağlı olarak normal dağıldığını varsayabiliriz.

X Y Xi b1 b1 + b2Xi Y = b1 + b2X Şekilde gösterilen dağılış hata teriminin önceden tahmin edilen dağılışıdır. Gerçekte hata teriminin dağılışının belli bir değere bağlı olarak modelde normal dağıldığını varsayabiliriz.

X Y Xi b1 b1 + b2Xi Y = b1 + b2X Ayrıca yatay eksene göre bakıldığında; şekilde gösterilen dağılış X=Xi durumunda Y’nin tahmini dağılımını da ifade etmektedir.

X Y Xi b1 b1 + b2Xi Y = b1 + b2X Y değeri b1 + b2Xi e yaklaştıkça göreceli olarak daha yüksek yoğunluğa sahip olmaktadır.

X Y Xi b1 b1 + b2Xi Y = b1 + b2X Bununla birlikte b1 + b2Xi den uzaklaştıkça yoğunluk azalmaktadır.

X Y Xi b1 b1 + b2Xi Y = b1 + b2X Yi ‘nin ortalama değeri b1 + b2Xi ve hata terimlerinin standart sapması da s, olduğunu varsayarsak.

X Y Xi b1 b1 + b2Xi Y = b1 + b2X Yi ’lerin olasılık yoğunluk fonksiyonları f(Yi) fonksiyonu ile ifade edilebilir.

İki Değişkenli Basit Regresyon Modelinin En Yüksek Olabilirlik Yöntemi İle Tahmini Tek denklemli ekonometrik modellerin tahmininde EKKY dışında kullanılan alternatif yöntem En Yüksek Olabilirlik Yöntemidir. Büyük örneklerde her iki yöntemde yakın sonuçlar vermektedir. Küçük örneklerde ise EYOBY’de olup sapmalıdır. EKKY’de ise sapmasızdır.

EYOBY’’nin regresyon modeline uygulanışı şöyledir: Y bağımlı değişkeninin ortalamalı varyanslı normal ve Yi değerlerinin bağımsız dağıldığı varsayılmaktadır. Yani (1)

Bu ortalama ve varyansla Yi nin Y1, Y2,…,Yn değerlerinin bileşik olasılık yoğunluk fonksiyonu şöyledir: Y’ler birbirinden bağımsız olduğundan, bu bileşik olasılık yoğunluk fonksiyonu, n tane bireysel yoğunluk fonksiyonunun çarpımı olarak yazılabilecektir. (2) (2) deki f(Yi), (1) deki ortalama ve varyanslı normal dağılımlı yoğunluk fonksiyonu olup şöyle ifade edilir:

(3)’ü (1) deki her Yi yerine koyarak aşağıdaki ifadeyi elde ederiz: (4) Ortak yoğunluk fonksiyonları her bir yoğunluk fonksiyonunun çarpımına eşittir. (4) de Yi ler bilindiğinde ve b1,b2 ve s2 ler bilinmediğinde (4) ifadesine en yüksek olabilirlik fonksiyonu adı verilir ve L(b1,b2,s2) şeklinde gösterilir.

(5) En yüksek olabilirlik yöntemi bilinmeyen bi parametrelerinin, verilen Y’nin gözlenme olasılığının ençok(maksimum) olacak tarzda tahmini esasına dayanır. Bu sebepten b’lerin EYOBY’ ile tahmin için (5) fonksiyonunun maksimumunun araştırılması gerekir. Bu türevdir, türev için en kısa yol (5) in log. nın alınmasıdır.