Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

HER ÖĞRENCİ MATEMATİK ÖĞRENEBİLİR MURAT GÜNER ATAŞEHİR-2012 www.muratguner.net.

Benzer bir sunumlar


... konulu sunumlar: "HER ÖĞRENCİ MATEMATİK ÖĞRENEBİLİR MURAT GÜNER ATAŞEHİR-2012 www.muratguner.net."— Sunum transkripti:

1 HER ÖĞRENCİ MATEMATİK ÖĞRENEBİLİR MURAT GÜNER ATAŞEHİR-2012

2 İÇİNDEKİLER KAYNAKÇA148 RASYONEL İFADELER İN SADELEŞTRİLMESİ125 İKİ YA DA DAHA ÇOK POLİNOMUN ORTAK BÖLENLERİN EN BÜYÜĞÜ (OBEB) VE ORTAK KATLARIN EN KÜÇÜĞÜ(OKEK)121 DEĞİŞKEN DEĞİŞTİRME YÖNTEMİYLE ÇARPANLARA AYIRMA112 TERİM EKLEYEREK VEYA ÇIKARARAK ÇARPANLARA AYIRMA110 AX 2 + BX + C VE X 2 + BX + C BİÇİMİNDEKİ POLİNOMLARIN ÇARPANLARA AYRILMASI99 ÖZDEŞLİKLERDEN YARARLANARAK ÇARPANLARA AYIRMA 20 GRUPLANDIRARAK ORTAK ÇARPAN PARANTEZİNE ALMA YÖNTEMİ12 f( x ) =ax 2 + bx + c FONKSİYONUNUN ALACAĞI DEĞERLERİN İŞARETİ VE İKİNCİ DERECEDEN BİR BİLİNMEYENLİ EŞİTSİZLİKLER7 f(x) = ax +b FONKSİYONUNUN ALACAĞI DEĞERLERİN İŞARETİ VE BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ EŞİTSİZLİKLER4 BİRİNCİ VE İKİNCİ DERECEDEN POLİNOMLARIN ÇARPIMI VEYA BÖLÜMÜ BİÇİMDE VERİLEN EŞİTSİZLİKLERİN ÇÖZÜMÜ7 RASYONEL İAFEDENİN BASİT RASYONEL İAFADEERLİN TOPLAMI OLARAK YAZILMASI 142 RASYONEL DENKLEMLER140

3

4

5 ÖRNEK

6 TANIM

7

8 ÖRNEK

9

10

11

12

13

14 TANIM

15

16 ÖRNEK

17

18

19

20

21

22

23

24

25

26

27

28

29 Neden  < 0 olmalıdır? Çünkü; kökte işaret değişir

30

31

32

33

34

35 ÖRNEK

36

37

38

39 SAKIN HA!

40

41

42 – + + –

43 ÖRNEK

44

45

46

47

48

49

50

51 1993- II ÖRNEK

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81 AT! GİTSİN!

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96 ÖRNEK

97 x + 2  x 2 – x – 1 < x + 7 eşitsizliğinin gerçek sayılardaki çözüm kümesini bulunuz.

98

99

100

101

102

103

104


"HER ÖĞRENCİ MATEMATİK ÖĞRENEBİLİR MURAT GÜNER ATAŞEHİR-2012 www.muratguner.net." indir ppt

Benzer bir sunumlar


Google Reklamları