Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

BAYES YAKLAŞIMI… Kesikli Olaylar için Bayes Kuralı Anakütlenin üç kategoriye göre sınıflandırıldığı varsayılsın. İlk grup sağlıklı olanlar, ikinci grup.

Benzer bir sunumlar


... konulu sunumlar: "BAYES YAKLAŞIMI… Kesikli Olaylar için Bayes Kuralı Anakütlenin üç kategoriye göre sınıflandırıldığı varsayılsın. İlk grup sağlıklı olanlar, ikinci grup."— Sunum transkripti:

1 BAYES YAKLAŞIMI… Kesikli Olaylar için Bayes Kuralı Anakütlenin üç kategoriye göre sınıflandırıldığı varsayılsın. İlk grup sağlıklı olanlar, ikinci grup astımı olanlar ve üçüncü grupta tüberküloz (TB) hastası olanlar olsun. Bu anakütlede %90 bireyin sağlıklı, %9’unun astım ve %1’in de tüberküloz hastası olduğu bilinsin. Rastsal seçilen bir birey için aşağıdaki olaylar tanımlanabilir: A1: Bireyin sağlıklı olması olayı A2: Bireyin astımı olması olayı A3: Bireyin tüberküloz hastası olma olayı (A.1)

2 2 …BAYES YAKLAŞIMI… Seçilen birey tüberküloz hastası olup olmadığını anlamak için röntgen çektirsin.Sağlık araştırmalarından alınan bilgiye göre, röntgen cihazlarının sağlıklı insan için tüberküloz teşhisi koyma olasılığı 0.03dür. Astımı olan bir hastaya tüberküloz teşhisi koyma olasılığı 0.2 ve gerçekte tüberküloz hastası olan bir kişiye tüberküloz teşhisi koyma olasılığı 0.95dir. B olayı seçilen bir kişi için röntgen cihazıyla konan teşhisin pozitif olma olayı olsun. olasılıklar “şartlı olasılıklar” dır. Bireyin sağlıklı iken röntgen cihazının TB teşhisi koyma olasılığı 0.03dür. Bu olasılıklar birey röntgen çektirmeden önce verilmektedir. Röntgen cihazına bağlı elde edilen sonuçlardır. (A.2)

3 3 Bayes kuralı …BAYES YAKLAŞIMI… (A.3) (A.4) Örnek bilgisi Ön bilgi Röntgen cihazından önce bireyin TB olma olasılığı (ön bilgi) örnek bilgisi Bireyin tüberküloz hastası iken röntgen cihazının TB teşhisi koyma olasılığı 0.95dir.(örnek bilgisi) Bu olasılık birey röntgen çektirmeden önce verilmektedir. Birey TB iken, röntgen çektirdikten sonra birey için TB lu çıkma olasılığı örnek sonrası olasılıkdır.

4 4 …BAYES YAKLAŞIMI… (A.5) Ön olasılıkdan örnek sonrası olasılığa geçiş (röntgen cihazı sonrası) nasıl olacaktır. Ön olasılıkdan Örnek sonrası olasılığa geçiş Birey TB iken, röntgen cihazının birey için TB teşhisi koyma olasılığı 0.17dir. Olasılık 0.01’den 0.17’ye yükseldiği için birey daha da endişe edebilir.

5 5 Sürekli Dağılımlarda Bayes Kuralı (Varyansın Bilindiği Durum) Hanehalkı gıda harcaması örneği ile çalışılsın. ,hakkında bilgi edinmeye çalışılan ortalama gıda harcamasıdır. Bireyin TB olup olmaması ile değil de  ’nın olası değerleri için olasılıklar ile ilgilenilsin.  2 bilinmektedir. …BAYES YAKLAŞIMI… (B.1)

6 6 Tecrübelerden veya uzmanlardan elde edilen ön bilgiler;  ’nın ön bilgiye dayalı olasılık yoğunluk fonksiyonu f(  ) ile özetlenebilir. Bu yoğunluk fonksiyonu, örnek alınmadan önceki düşünceleri ifade etmektedir. f(  ) ile ilgili farklı iki ön bilgi incelensin. İlk olarak, örnek bilgisi nasıl ifade edilebilir? Röntgen ile hastalığın teşhisi örneğine dönülürse olasılığı; anakütle özellikleri verildiğinde röntgen cihazının hastalık için pozitif teşhis koyma olasılığıdır. Burada, anakütle özellikleri  ile özetlenmektedir ve verilen  ’ya göre örnek verileri için gıda harcaması olasılık yoğunluk fonksiyonu bulunur. …BAYES YAKLAŞIMI…

7 7 Fonksiyon(B.2),  verildiğinde belli bir aralıkta hanehalkı gıda harcamasının olasılığını bulmak için kullanılabilir.  sabitken anlamına gelir. yerine daha çok  sabit iken bütün gözlemler için (benzerlik fonksiyonu) olasılık yoğunluk fonksiyonu; …BAYES YAKLAŞIMI… (B.2) (B.3) tercih edilmektedir.

8 8 (B.3) eşitliğindeki ikinci satır, örneğin gözlemlerinin bağımsız olduğunu ifade etmektedir. Örnek sürecinde β sabitken f(  ) yoğunluk fonksiyonu ile β nın belirsizliği ifade edilmektedir. [f(  )] ön yoğunluk fonksiyonu  ’nın rastsal olduğu olasılık yoğunluk fonksiyonu [f(  /y)] de  ’nın belirsizliğini ifade etmektedir. (Örnek sonrası yoğunluk fonksiyonu) …BAYES YAKLAŞIMI…

9 9 örnek sonrası yoğunluk fonksiyonu nasıl elde edilebilir? kesikli olaylardaki olasılığına benzemektedir. B örnek bilgisi ve A 3 ilgilenilen bilinmeyen kısımdır (birey TB hastası). Benzer şekilde; (B4) Röntgen cihazının TB teşhisi koyma olasılığı idi.

10 10 i bulmak için Bayes kuralı ile sürekli olasılık yoğunluk fonksiyonu kullanılırsa: yoğunluk fonksiyonu Y’ler gözlenen değerler olduğu için fonksiyon değildir, sabittir. Örnek bilgisi ile ortak yoğunluk fonksiyonu …BAYES YAKLAŞIMI…

11 11 …BAYES YAKLAŞIMI… Örnek alındıktan sonra fonksiyonu artık fonksiyon değil sabit bir sayı olmaktadır. şeklinde yazılabilir. Eşitlik hesaplanırken ilk olarak ile yoğunluk fonksiyonları çarpılır. Bu çarpım sonucu, örnek sonrası yoğunluk fonksiyonu ’nin şeklini verir.  değeri, olasılık yoğunluk fonksiyonunun değerini bir yapacak bir değer olarak seçilmelidir.  normalleştirme sabitidir. (B4) Son olasılık yoğunluk fonksiyonu; ön oyf ile benzerlik fonksiyonun çarpımının bir oranıdır.

12 12 …BAYES YAKLAŞIMI… Bilgi Verici Olmayan Ön Dağılım Ortalama harcama  ile ilgili ön bilgiye sahip olmayalım.  Herhangi bir değeri ve aralığında olabilir. Ortalama harcama negatif olamaz ve ortalama harcamanın değeri için üst bir sınır konulabilir. Buda kısaca dur. Tam bilgisizliği ifade eden bir yoğunluk fonksiyonu elde edilmek istenirse ile  ilgili tam belirsizliği göstermek için, örneklem öncesi uniform yoğunluk fonksiyonu kullanılmaktadır. (B.5) Ön bilgi

13 …BAYES YAKLAŞIMI… (B.2) (B.4) (B.3) Fonksiyon(B.2),  verildiğinde belli bir aralıkta hanehalkı gıda harcamasının olasılığını bulmak için kullanılabiliyordu.

14 …BAYES YAKLAŞIMI… 14 Bayes kuralını uygulamak için eşitlik (B.6) da, (B.2) ve (B5) yerine konulursa: (B.6) (B.5) (B.2)

15 15 …BAYES YAKLAŞIMI… Bir sonraki adım (B.6) eşitliğini  için yoğunluk fonksiyonu olarak yeniden yazmaktır. e’nin üzerinde yer alan ifade aşağıdaki gibi yazabilir: örneklem ortalaması bir eklenip bir çıkarılırsa (B.7) Bu ifade eşitlik (B.6)’da fonksiyonunda yerine konulursa; Gözlemlerin örnek ortalamasından farkı sıfır olduğu için 0

16 16 …BAYES YAKLAŞIMI… (B.8) (B.6) (B.7) Tekrar yazarsak; Yerine koyarsak İfadeyi ayrıştırdık

17 (B.9) Eşitlik (B.8)’deki yoğunluk fonksiyonu ne çeşit bir yoğunluk fonksiyonudur? İlk olarak c 1,  ’a bağlı değildir.  için olasılık yoğunluk fonksiyonudur. …BAYES YAKLAŞIMI…

18 sabiti yoğunluk fonksiyonunun altındaki alanı 1’e eşit yapmak zorunda olan bir ölçeklendirme sabitidir. Normal dağılımın altındaki alan 1 olduğu için sabit düzenlenip (B9) da yerine konduğunda 18 …BAYES YAKLAŞIMI… Bu olasılık yoğunluk fonksiyonunun şekli aşağıdadır: (B.10) Bu ifade ile tanımlanan yoğunluk fonksiyonu ortalamalı ve  2 /T varyanslı bir normal dağılımdır. (B.11) olarak elde edilir

19 19 Benzer şekilde; …BAYES YAKLAŞIMI… idi.

20 20 …BAYES YAKLAŞIMI… (B.12) Bu bölümün amaçlarından biri örnekten önce ve sonra bir normal dağılımın ortalaması ile ilgili belirsizliği ifade etmenin yolunu bulmaktır. Kısım 1 de, ortalama (  ile ilgili belirsizlik olmasına karşın varyans (  2 ) biliniyordu. Örnek bilgisi mevcut olduğunda belirsizlik ile ilgili ifadenin değiştirilmesinde ve  ile ilgili tam belirsizliğin ifade edilmesinde bir yöntem bulunmaya çalışıldı. Kısım 1 de, eşitlik (B.12)’da verilen ’nin elde edilmesi ile örnek sonrası belirsizlik ifadesini tanımlamak için sezgisel yaklaşımlar kullanıldı.  için örnek sonrası yoğunluk fonksiyonu;

21 21 …BAYES YAKLAŞIMI… Bilgi Verici Ön Dağılım Bir pilot araştırması şeklindeki örnek öncesi bilgisinin mevcut olduğu Bayes kuralının uygulamasına dönülsün. ’nin bilindiği varsayımı burada da geçerlidir. Örnek öncesi bilgisinin normal yoğunluk fonksiyonu: pilot çalışmadan elde edilen örnek ortalaması pilot çalışmasındaki örnek hacmidir. ’a bağlı olan örnek öncesi bilgisi için aşağıdaki eşitlik ele alınmaktadır (18) (B.1)

22 22 Bu yoğunluk fonksiyonu aşağıdaki gibi yazılabilmektedir: …BAYES YAKLAŞIMI… Örnek öncesi (ön bilgi) yoğunluk fonksiyonundan, örnek sonrası yoğunluk fonksiyonunu elde etmek için; (B.14) nolu eşitlik ve eşitlik (B.3)’de verilen örnek bilgisi, eşitlik (B.4)’de Bayes kuralı formülü içerisinde yerine yazılmaktadır. Bu işlem aşağıdaki gibi sonuçlanmaktadır (B.15) (B.14)

23 23 …BAYES YAKLAŞIMI… (B.15)’de elde edilen fonksiyon, örnek sonrası yoğunluk fonksiyonudur. Kısım 3.1 de sezgisel yolla elde edilmiştir. Kısım 3.1 de sezgisel yolla elde edilen argüman, temel örnekten hareketle yapılan pilot çalışması ile elde edilen bilginin ağırlıklandırılması için uygun bir plan yapmaya dayanmaktadır. Eşitlik (B.15)’in de gerekli işlemler yapılarak eşitlik (B.16)’de verilen sonuç elde edilebilir. (B.16) Örneklemin ortalaması y 1 ve ön bilgi dağılımın ortalaması y 0 nın ağırlıklı ortalamasıdır.

24 24 Varyans Bilinmediği Durumda Sürekli Dağılımlar için Bayes Kuralı: …BAYES YAKLAŞIMI… Varyansın bilindiği durumdan çok, varyansın bilinmediği durumlarla daha sık karşılaşılmaktadır. Bu durumda Bayes Kuralı  ’nın bilinmeyen ortalaması türünden yazılmamaktadır. Gerçekte  2 bilinmeyendir ve Bayes kuralının ifadesine dahil edilmelidir. Bu durumda Bayes kuralı aşağıdaki gibi yazılabilir: (C.1)

25 25 …BAYES YAKLAŞIMI… İlk olarak, fonksiyonu;  ve  2 için örnek öncesi olasılık yoğunluk fonksiyonunu göstermektedir. Örnek alınmadan önce  ve  2 ile ilgili bilginin, bu örnek öncesi yoğunluk fonksiyonu ile elde edilebileceği varsayılmaktadır.  2 için örnek öncesi bilginin nasıl elde edilebileceği sorusuna yanıt aranmalıdır.  2 değerinin hanehalkı gıda harcamalarının yer alacağı uygulanabilir aralığı belirlediği hatırlanmalıdır. (C.2) Örnek sonrası

26 26 …BAYES YAKLAŞIMI… Normal dağılımdan gelen çoğu gözlem, ortalamanın aralığında yer almaktadır. Böylece, normal dağılım olduğu varsayılarak, haftalık gıda harcamalarının güven aralığı bilgisine sahip olunursa,  2 varyans bilgisine de sahip olunmaktadır. için örnek öncesi gösterim verildiğinde, bir sonraki adım örnek bilgisi ’i ifade etmektir. Böyle bir ifade eşitlik (9)’de yer alan ifade ile özdeş olmaktadır. Burada tek fark  2 ’in önemli olduğunu belirtmek için yerine ’in yazılmasıdır. (C.3)

27 27 …BAYES YAKLAŞIMI… sabiti önceki gibi aynı anlamı taşımaktadır. Bu sabit, örnek sonrası olasılık yoğunluk fonksiyonu altında toplam alanın 1’e eşit olmasını gerektirmektedir. (C.1) eşitliğindeki son ifade dir. Bu fonksiyon ortak örnek sonrası yoğunluk fonksiyonu olmaktadır. Örnek alındıktan sonra  ve  2 ile ilgili bilgi durumunu ifade etmektedir. Eğer asıl ilgilenilen  2 yerine  ile ilgili bilgiyi tanımlamak ise, o zaman  2 ’i, ortak örnek sonrası yoğunluk fonksiyonundan çıkarmak gerekmektedir. Böylece elde edilmektedir

28 TAHMİN VE YORUMLAMA İÇİN BAYES YAKLAŞIMI: BAZI TEMEL TANIMLAR, KAVRAMLAR VE UYGULAMALAR [1] [1 ] [1 ] Bu konu, Griffiths, W., Hill, R.C., Judge, G.G., (1993), Learning and Practicing Econometrics kitabı Bölüm 25’ten alınmıştır. Bu bölümde ve izleyen bölümde, bilinmeyen  parametresi hakkında belirsizliği ifade etmek ve yorumlar yapabilmek için alternatif yaklaşımlarla ilgilenilecektir. Bayes yaklaşımı olarak bilinen alternatif yaklaşımının önemli özelliği parametreye ilişkin belirsizliğin ifadesinde, bilinmeyen  parametresine ilişkin olasılık hesapları kullanılmasıdır.

29 29 Bayes yaklaşımında olasılık hesapları, sadece örnek sonuçları için değil aynı zamanda bilinmeyen sabit parametreler için de kullanılmaktadır Olasılık yoğunluk fonksiyonlarının farklı türleri: 1)örnek alınmadan önce parametre hakkındaki belirsizliği ifade etmek (örnek öncesi olasılık yoğunluk fonksiyonu), 2) belirli örnek sonuçlarının olabilirliğini tanımlamak, 3) örnek alındıktan sonra parametre hakkındaki belirsizliği ifade etmek(örnek sonrası olasılık yoğunluk fonksiyonu) için kullanılabilir. Giriş…

30 30 Klasik regresyon modellerinde  hakkında yorumlama yapmak için sadece örnek bilgisi kullanılır. Bu iki bölümde kesin olmayan veya belirsiz örnek dışı bilgi ele alınacaktır. Parametre hakkındaki belirsizlik örnek dışı bilginin olması ve kayıplardan herhangi birinin hesaba katılmasından kaynaklanan yanlış bir kararın alınmasına sebep olabilecektir. Bu bölümde, tahmin ve yorumlama ele alınacaktır. Bir ekonomik problem kapsamında aşağıdaki sorular ele alınabilir: 1.Örnek alınmadan önce ve sonra, hipotezler veya parametreler hakkındaki belirsizlik ifade edilebilir mi? 2. Örnek öncesi bilgi, örnek almadan veya deneylere dayanan bilgi ile nasıl birleştirilir? 3. Karar sonuçlarını göz önünde tutan bir çerçeve var mıdır? …Giriş… …

31 31 Örnek toplamadan önce: Örneğin ortalama gıda harcamasının ne olabileceği konusunda bir bilgiye sahip olunmadığı varsayılsın.  ’nın değeri hakkında tam anlamıyla belirsizlik olduğu söylenebilir. gibi 40 tane gözlem içeren örnek olsun. Örnek ortalaması  için nokta tahmini olsun. Bu durumda  hakkında belirsizlik azalmıştır. Ana kütlenin tamamı gözlenmemiş, sadece 40 gözlemden oluşan bir örnek ele alınmıştır. …Giriş…

32 32 Örnek gözlendikten sonra elde edilen bilgi, örnekten önce sahip olunan bilgiye göre daha kesin veya daha belirgindir. İlk soru: Örnekten önce ve sonra  hakkındaki belirsizliği ifade edebilir miyiz? Yorum için ne kullanılmalıdır? İkinci soru; Örnek ile sağlanan bilgiden başka bilgi var mıdır? Örnek alınmadan önce; Haftalık ortalama gıda harcaması hakkında tam anlamıyla belirsizlik olmadığını ve onun değeri hakkında bir bilgiye sahip olunduğu varsayılsın: …Giriş…

33 33 Ön bilgi (apriori bilgi), daha önce alınan örneklerden elde edilen bilgiler ve edindiğimiz deneyimlerdir. Ön bilgi nasıl gösterilebilir? Örnek alındıktan ve  hakkında ek bir bilgi elde ettikten sonra bilgi nasıl güncellenebilir? Bilgi toplama süreci nasıl tanımlanıp, kullanıma hazır hale getirilebilir? Ekonomik teori araştırmacıya bu konuda birçok ön bilgi sağlamaktadır. Eğer bir bilgiye sahip olmadan çalışmaya başlanırsa, örnekten önce ve sonra ortalama harcama hakkındaki belirsizlik nasıl ifade edilecektir? …Giriş…

34 34 Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… Hanehalkı gıda harcaması verisi için istatistiksel model veya örnekleme süreci : t.nci hanehalkı için yapılmış gıda harcaması bilinmeyen parametre, e t ise gözlemlenemeyen rastsal değişkendir e t ’nin ortalaması “0” ve varyansı   ile gösterilmektedir. Herbir y t ’nin çekimi diğer çekimlerden bağımsızdır ve herhangi iki çekim arasındaki kovaryans sıfırdır (y t ve y s ). Benzer şekilde e t ve e s arasındaki kovaryans da sıfıra eşittir. (1)

35 35 veya Bayesçi yorumlamanın temelinde varyans parametresi  2 ’nin bilindiği varsayılmaktadır. …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… Örnek Sonrası Bilgi  hakkında bir bilgiye sahip olunmadığı ve belirsizlik içinde olunduğu varsayılsın. 40 tane rasgele hanehalkı seçerek haftalık gıda harcamaları gözlensin. (2) (3) x tüm elemanları bire eşit olan T boyutlu bir vektördür. x = (1, 1, ….,1)

36 36 örnek ortalaması …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… Tablo 1 s.77 den görüldüğü gibi örnek bilgisidir. Örnek bilgisi elde edildikten sonra  hakkındaki belirsizlik durumu olasılıkla ifade edilir:  ’ nın olasılık yoğunluk fonksiyonu: Örnek alınmadan önce örnek ortalaması olasılık yoğunluk fonksiyonunun bir tahmincisidir (4)

37 37 …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi…

38 38 bilgisi ile yoğunluk fonksiyonu, örnek ortalamasının olasılığını belirli herhangi aralık içinde tanımlamaktadır. (4)’den olduğu bilinmektedir. Bu nedenle; (5) z değişkeni rastsal değişken rastsal değişkendir z veya ’nın olasılık ifadeleri,  için hipotez testleri veya aralık tahminleri oluşturmak için kullanılmaktadır.  parametresi sabit olarak ele alınmıştır. …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… (4)

39 39  ’nın olasılık yoğunluk fonksiyonunu hesaplarken (5) eşitliği ile başlanır: (5) …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi…

40 40 …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… ve , z’nin doğrusal fonksiyonudur. Normal rastsal değişkenlerin doğrusal fonksiyonları, normal rastsal değişkenlerdir.  normal dağılıma sahiptir. Ortalaması: sabittir. (6)  nın olasılık yoğunluk fonksiyonu

41 41 Bu fonksiyon örnek alındıktan sonra  hakkındaki belirsizliği ifade etmek için kullanılmaktadır. Çünkü eşitlik (6) normal olasılık yoğunluk fonksiyonudur ve aşağıdaki gibi gösterilebilir: …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… (7) örnek bilgisi y gözlemlendikten sonra  hakkındaki belirsizliğin ifadesini gösterir. yerine kullanılmaktadır. Örnek sonrası yoğunluk fonksiyonu

42 42 Örnek Öncesi Bilginin Güncellenmesi …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… ’nın dağılımı  hakkındaki bilgisizliği ifade etmek için spesifikasyon seçimi ve örnek öncesi yoğunluk fonksiyonu olarak bilinmektedir. Bu yoğunluk fonksiyonu ve aralığında uniform yoğunluk fonksiyonudur. Thomas Bayes, yoğunluk fonksiyonunu örnekten bilgi sağlamak şartı ile güncellemiştir. Güncellenen dağılım fonksiyonudur ve “örnek sonrası yoğunluk fonksiyonu” olarak isimlendirilir ve (7) eşitliğindeki normal dağılım olasılık yoğunluk fonksiyonuna sahiptir.

43 43 Örnek seçildikten sonra bilindiği varsayılsın. Bu durumda dağılım tam olarak belirlenebilir.  hakkındaki bilgi aşağıdaki gibidir: …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… (8)

44 44 Ortalama Harcama İçin Olasılık İfadeleri …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… Yaklaşık olarak  21$ ve 26$ değerleri arasında yer almaktadır. Ortalama harcamanın ne kadar olduğu hakkında herhangi bir fikre sahip olunmadığında bir örnek alınması önem taşımaktadır. Bu sonuç, haftada ortalama gıda harcamasının 21$ ve 26$ arasında olma olasılığının %96.2 olduğunu göstermektedir

45 45 …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi…

46 46 Aralık Tahmini …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… Belirli bir olasılık değeri ile  ’yı kapsayacak güven aralığı ne olacaktır? ifadesini sağlayan bir çok aralık vardır. Seçilecek aralık en çok bilgiyi ifade etmeli ve en dar olmalıdır.

47 47 …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… Bu sonuca göre haftalık gıda harcaması 0.95 olasılıkla 21.24$ ile 25.95$ arasında yer almaktadır. Elde edilen bu aralık tekrarlı örneklem teorisi ile aynıdır. Bu bölümde farklı yorumlar gösterilecektir: Örneğin gözlendiği ve bir olasılık yoğunluk fonksiyonu açısından  ile ilgili belirsizliğin söz konusu olduğu durumda %95 olasılıkla  ’i içeren aralık ne şekilde olacaktır? Aralığın sınırları verilmiş ve bilinmemektedir. Bu bölümdeki fark, sonuçların olasılık ifadesi olarak açıklanmasıdır. Güven aralıkları ile birlikte olasılık teknikleri kullanılmaktadır.

48 48 …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… Hipotezlerin Karşılaştırılması CEO, kuruluştan ve yeni perakende mağaza yönetiminden, maliyetler ve gelir ile ilgili bilgileri toplamış olsun. Eğer ortalama gıda harcaması hafta başına 22$ ise, yeni bir perakende mağaza açmanın faydalı olacağına karar verecektir. Bu durumda hipotezler: (9) Örnek alındıktan sonra, örnek sonrası yoğunluk fonksiyonu olarak her bir hipotezin olasılığını hesaplamak için kullanılacaktır.

49 49 …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… Hafta başına ortalama, en az 22$ harcama olasılığı dir. Fark oranı H 1 hipotezi, H 0 hipotezine göre yaklaşık olarak 10 kat daha fazla olasılıkla doğrudur. (10)

50 50 …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… İstatistiksel karar teorisi, eşitlik (10) da verilen fark oranına bağlı olarak H 0 ve H 1 i seçmekle ve yanlış karar verilmesiyle ortaya çıkan kayıplarla ilgilenmektedir. Daha önceki konularda H 0 hipotezinin kabul yada red kuralları tanımlanmıştı. Bu kurallar örnek ortalaması ’nın H 0 hipoteziyle uyumlu olup olmamasına bağlıdır. Bu yaklaşım yanlış karar ile ortaya çıkan kayıpları açıkça önlememektedir.

51 51 …Ortalama Harcamaya İlişkin Belirsizliğin İfade Edilmesi… Kayıp Fonksiyonu: İyi bir tahminci, Bir parametreyi gerçek değerine yakın olarak tahmin etmelidir. İyi bir tahmin edici için, tahmin hatası ortalama seviyede 0’a yakın olmalıdır.  Herhangi bir  parametresinin tahmini olsun. Böyle bir tahmin ve dolayısıyla tahmin hatası yapmaktan dolayı ortaya çıkan kaybı önlemek için bir fonksiyona ihtiyaç vardır. Bu fonksiyon kayıp fonksiyonu olarak adlandırılsın.

52 52 Doğal olarak, arasındaki uzaklık ne kadar büyükse, ’nın değeri de o kadar büyük olacaktır. Kayıp Fonksiyonu:  Bir tahmincinin iyi olup olmadığını test etmek için istatistiksel bir ölçüye gereksinim vardır.  Eldeki her farklı y örneğinden hareketle elde edilecek kayıp fonksiyonlarının ortalaması ( ya da beklenen değeri) böyle bir ihtiyaca cevap verebilir.

53 53  Risk fonksiyonu, kayıp fonksiyonunun beklenen değeri olarak tanımlanır ve aşağıdaki gibi hesaplanır Kayıp Fonksiyonu: olduğu durum için Bir istatistikçinin yukarıdaki beklenen değeri minimum kılacak şekilde bir tahminde bulunması gerekmektedir. Bu şekilde elde edilecek tahmin edici, literatürde  ’nın bir Bayes tahmin edicisi olarak ifade edilmektedir. c sabittir ve ilgilenilen duruma göre farklılık göstermektedir.

54 54 Kayıp Fonksiyonu: olduğunda Kayıp Fonksiyon Türleri: 1. Karesel Kayıp Fonksiyonu: 2. Mutlak Kayıp Fonksiyonu: 3. Sıfır – Bir Kayıp Fonksiyonu: olur.

55 55 Nokta Tahmini … ’nın bir tahmini olsun: ’nın aşırı tahmini: ’nın eksik tahmini: durumlarında ortaya çıkar.

56 56 Nokta Tahmini … ’nın örnek sonrası yoğunluk fonksiyonu ortalamalı ’lı lı olsun. Bu durumda en iyi nokta tahmini, kayıp fonksiyonundan elde edilen beklenen kaybı minimum yapan tahmindir. örnek sonrası ortalama artık en iyi değildir. Çünkü eksik tahminleme, aşırı tahminlemeden daha az risklidir.

57 57 a = 2, ve olsun. Ortalama gıda harcamasının en iyi nokta tahmini …Nokta Tahmini …

58 58 …Bilgi Toplama… Belirsizlik altındaki karar problemlerinde, geçerli olan tüm bilgiden yararlanmalı ve bu bilgiler toplanmalıdır. Örneğin, örnek öncesi elde edilen sonuçlar geçerli olabilir ve basitçe ortalama harcama hakkında fikirlere sahip olunabilir. Örneklem alınmadan önce  ile ilgili belirsizlik düzeyi veya bilgi durumu nasıl ifade edilir? Örneklemi gözlemledikten sonra, sahip olunan bilgi nasıl güncellenebilir veya belirsizlik düzeyindeki azalış nasıl tanımlanabilir? Diğer bir değişle bilgi süreci için ne uygulanır?

59 59 Ön Bilginin Dahil Edilmesi …Bilgi Toplama… İstatistiksel model Gözlemleri kullanarak gıda üzerindeki ortalama harcama hakkında bilgi edinmeye devam edilsin. Burada e t lar bağımsız dağılışı göstermektedir. bilinmektedir.

60 60 …Bilgi Toplama…  hakkındaki örnek öncesi veya başlangıç bilgisi; örnek öncesinden, sahip olunan bilgiden veya uzmanların görüşünden elde edilebilmektedir. Bu kısımda da küçük bir örnek ile pilot çalışması yapılarak ön bilgi elde edilmeye çalışılacaktır. (T 0 )

61 61 …Bilgi Toplama… 40 gözlem içeren örneklemden önce altı hanehalkını içeren küçük bir pilot çalışması yapılsın. s.87. Tablo 2 Sıfır indisi altı haneyi, bir indisi 40 haneyi göstermektedir. T o pilot çalışma örnek büyüklüğü ; T 1 büyük örnek büyüklüğüdür. Örnek bilgisi

62 62 Tablo 2 pilot çalışmasındaki altı hane için haftalık gıda harcaması …Bilgi Toplama…

63 63 …Bilgi Toplama… nin bilindiği varsayılsın. İlk olarak pilot çalışmadan elde edilen bilgi (ön bilgi), örnek sonrası yoğunluk fonksiyonu tarafından kullanılabilmektedir. İkinci olarak bir sonraki adım örneklemi büyütmektir. Yani, bilgiyi arttırmak-güncellemek için, 40 gözlem içeren örnek alınırsa; 40 gözlem ele alındığında,

64 64 Ön bilgi ihmal edilirse, olasılık yoğunluk fonksiyonu ile ilgili yeni örnek bilgisi: …Bilgi Toplama… Üçüncü olarak iki bilgi nasıl birleştirilecektir. Say.89 Şekil 4.

65 65 Şekil 4: biliniyorken iki örnekten için yoğunluk fonksiyonları …Bilgi Toplama…

66 Pilot çalışmadan elde edilen yoğunluk fonksiyonu, T 1 gözlemli örnekten elde edilen yoğunluk fonksiyonuna göre daha fazla yayılmaktadır. İlave yayılma,  hakkındaki ilave belirsizliği göstermektedir. dan elde edilen %95 güven aralığı İkinci güven aralığı daha dardır.

67 67 Yukarıdaki iki bilgi Bayes kuralı ile birleştirilebilir. Örnek sonrası yoğunluk fonksiyonu için notasyon …Bilgi Toplama… Bu fonksiyon ortalama ve varyans ile normal dağılmaktadır. Burada ön bilgi, örnek bilgisi ile güncellenerek örnek sonrası yoğunluk fonksiyonu elde edilir.

68 68 …Bilgi Toplama… ve T 0 ve T 1 den hareketle nasıl hesaplanır Örnek sonrası örnek ortalaması ve,, ortalamalarına bağlıdır.  üzerindeki bilginin güvenirlik hesaplamaları, duyarlılıkları ile yapılabilir. Bu duyarlılık, yoğunluk fonksiyonundaki varyansın tersidir.

69 69 Her bir bilgi kaynağının duyarlılığı aşağıdadır: Büyük örnek daha fazla duyarlılığa sahiptir. h 0 ve h 1 duyarlılıkları ile ile in ağırlıklı ortalamasıdır. h 0 ve h 1 duyarlılıkları ile ile …Bilgi Toplama…

70 ele alındığında birleştirilmiş bilginin duyarlılığı basit olarak her bilgi kaynağının duyarlılığının toplamına eşittir. 70 Duyarlılık, örnek sonrası yoğunluk fonksiyonunun varyansının tersidir. Varyans azaldıkça duyarlılık 1’e yaklaşmaktadır. …Bilgi Toplama… vearasında yer almaktadır. e yakındır.

71 71 Örnek sonrası yoğunluk fonksiyonundan sağlanan bilgi; Şekil 5 (sayfa 90).Örnek sonrası yoğunluk fonksiyonu diğer iki dağılımdan daha az varyansa yani yayılıma sahiptir. Örnek sonrası yoğunluk fonksiyonunun, her iki örneği birleştirerek elde edilen birleştirilmiş örnek sonuçları ile aynı olduğu görülecektir (46 gözlemli). …Bilgi Toplama…

72 72 …Bilgi Toplama… Şekil 5:  2 biliniyorken, iki kaynaktan bilginin birleştirilmesi

73 73 idi. Yukarıdaki eşitlik aşağıdaki gibi yeniden yazılırsa örnek hacminden elde edilen örnek sonrası yoğunluk fonksiyonun varyansı ile aynı olacaktır. …Bilgi Toplama… olacaktır.Yani

74 74 Bu bölümdeki amaç;  2 biliniyorken  nın normal populasyon ortalaması hakkında bilgi edinmektir.  için ortalamalı ve varyanslı örnek öncesi ya da örnek bilgisi ile ortalamalı ve varyanslı normal yoğunluk fonksiyonlu örnek bilgisi varsa  için normal yoğunluk fonksiyonu ortalamalı varyanslı olacaktır. (Şekil 5) …Bilgi Toplama

75 75 İkinci soru grubu, ön bilginin tanımlanması ve kullanılması ile ilgilidir: İkinci Problem İçin Bayesçi Yorumlama…  Ön bilgi nasıl gösterilebilir?  Örnek alındıktan ve hakkında ek bir bilgi elde ettikten sonra bilgi durumu nasıl güncellenebilir?  Bilgi toplama süreci nasıl tanımlanıp, kullanıma hazır hale getirilebilir?

76 76 … İkinci Problem İçin Bayesçi Yorumlama… Louisiana Fried Chicken’da (LCF) haftalık satışların  ortalama ve  2 =4 varyans ile normal dağıldığı varsayılsın. Haftalık satışlar: y LFC satış mağazasının haftalık satışları ile ilgilenilmektedir. Bu nedenle, haftalık satışların ortalaması hakkında bilgi toplasın. Örnekleme teorisine göre, haftalık satışlara ait örnek alınır. Böylece burada 10 gözlemli örnek alınsın. (Örnek Bilgisi) Ön bilgi

77 77 …İkinci Problem İçin Bayesçi Yorumlama… Örneklem ortalaması nokta tahmini olarak kullanılırsa: %95 güvenle aralık tahmini: Haftalık satışların ortalaması (5900$); 4700$ ile 7200$ arasındadır.

78 78 …İkinci Problem İçin Bayesçi Yorumlama… Ön Bilgi Tavuk üzerine hazır gıda satışı yapan bir mağazada daha önceden haftalık tavuk satışları ile ilgili bazı fikirlerin olduğu varsayılsın. %95 olasılıkla ortalama haftalık satışların 5000$ ile 11000$ arasında olduğuna inanılmaktadır: Olası  değerleri ile ilgili subjektif ön yoğunluk fonksiyonu, ortalama ve varyansa sahip ve normal dağılım göstermektedir.

79 79 …İkinci Problem İçin Bayesçi Yorumlama… Normal dağılımın özelliğini kullanarak aşağıdaki eşitlik yazılabilir: standart normal dağılımdır. N(0,1) dir.

80 80 …İkinci Problem İçin Bayesçi Yorumlama… Eğer normal dağılım  hakkındaki ön bilgiyi ifade etmek için uygunsa, ön bilgiye dayalı yoğunluk fonksiyonu olur. Daha önceden yapılmış pilot çalışması için ön bilgi ise aşağıdaki gibi yazılmaktaydı: Slayt 64 Slayt 79 LFC örneğinde ön bilgi aşağıdaki gibidir:

81 81 …İkinci Problem İçin Bayesçi Yorumlama… Bu olayda pilot çalışması yoktur. Bununla beraber bir önceki hipotetik örnekten geliyormuş gibi ifadesindeki bilgi kullanılır. Bu değerleri hesaplayabilmek için a ihtiyaç vardır. Varsayılan örneklemin hacmi tür. Bu değer tam değer olmayıp işlem için geçerli değildir. slayt 79

82 82 …İkinci Problem İçin Bayesçi Yorumlama… Ön Bilginin Güncellenmesi Kısım 3’te, normal olasılık yoğunluk fonksiyonu biçiminde ifade edilen örnek öncesi bilgi ile normal olasılık yoğunluk fonksiyonundan gelen örnek bilgisi birleştirildiğinde, elde edilen sonucun, ortalama ve varyans ile birlikte normal örnek sonrası olasılık yoğunluk fonksiyonu olduğu ifade edilmişti. Sonuçlar; slayt.76-77

83 83 …İkinci Problem İçin Bayesçi Yorumlama… Haftalık ortalama satışlar için  örnek sonrası olasılık yoğunluk fonksiyonu Örnek öncesi ve sonrası olasılık yoğunluk fonksiyonları Şekil 6 dadır. Grafikler incelendiğinde örnek bilgisinin etkisi görülmektedir. Örnek bilgisi, dağılımı sola kaydırmıştır.

84 Şekil 6:  biliniyorken  için ön ve örnek sonrası yoğunluk fonksiyonları

85 85 …İkinci Problem İçin Bayesçi Yorumlama… Aralık Tahmini Örnek sonrası olasılık fonksiyonundan haftalık ortalama satışlar için  aralık tahmini gerçekleştirilmektedir. %95 olasılıkla aralık tahmini; veya

86 86 …İkinci Problem İçin Bayesçi Yorumlama… Hipotez Testi Tek yönlü hipotez testi: LFC örneği kapsamında hipotez tavuk ürünleri satış mağazasının satın alınıp alınmayacağı ile ilgili olsun. Eğer H 1 hipotezi doğru ise mağazayı satın almak karlı olacaktır. Tam tersi ise satın almak yanlış olacaktır. Yapılacak ilk adım ilgili test istatistiğini hesaplamaktır. Mağazayı satın almak karlı değildir. Mağazayı satın almak karlıdır. Bkz. Sayfa 82

87 87 …İkinci Problem İçin Bayesçi Yorumlama… %5 anlamlılık düzeyinde kritik tablo değeri tir. olduğu için H 0 reddedilemez. Bu nedenle satış mağazasını satın almak karlı olmayacaktır. Örnek sonrası yoğunluk fonksiyonu kullanıldığında;

88 88 …İkinci Problem İçin Bayesçi Yorumlama… H 0 ın fark oranı: H 1 ın fark oranı: H 1 hipotezi H 0 hipotezine göre 57 kat olabilirlikle daha doğrudur. Bu örnek iki çıkarsamaya ilişkin sonuçların nasıl farklı olduğunu göstermektedir. Bu farklılık  için elde edilen ön bilgiye bağlı olmaktadır.


"BAYES YAKLAŞIMI… Kesikli Olaylar için Bayes Kuralı Anakütlenin üç kategoriye göre sınıflandırıldığı varsayılsın. İlk grup sağlıklı olanlar, ikinci grup." indir ppt

Benzer bir sunumlar


Google Reklamları