Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

DİFERANSİYEL Matlab ile Sayısal Diferansiyel. Diferansiyel Denklemler Diferansiyelin Tanımı : Bağımlı değişkenlerin bağımsız değişkenlere göre değişim.

Benzer bir sunumlar


... konulu sunumlar: "DİFERANSİYEL Matlab ile Sayısal Diferansiyel. Diferansiyel Denklemler Diferansiyelin Tanımı : Bağımlı değişkenlerin bağımsız değişkenlere göre değişim."— Sunum transkripti:

1 DİFERANSİYEL Matlab ile Sayısal Diferansiyel

2 Diferansiyel Denklemler Diferansiyelin Tanımı : Bağımlı değişkenlerin bağımsız değişkenlere göre değişim hızıdır. Sınır koşulları için sayısal değerler bulunmasıdır. Örnek : Dv/dt v nin t ye göre değişim hızını belirtir.

3 DSOLVE – Diferansiyel Çözücü • Tanım : • Birinci dereceden diferansiyelleri varsayılan t değişkenine göre çözer.G irilen denklem karakter şeklinde olmalıdır. • Kullanım : • S = dsolve(eq) S = dsolve(eq,cond,var) S = dsolve(eq,cond,var,Name,Value) Y = dsolve(eq1,...,eqnN) Y = dsolve(eq1,...,eqnN,cond1,...,condN,var) Y = dsolve(eq1,...,eqnN,cond1,...,condN,var,Name,Value)

4 DSOLVE – Diferansiyel Çözücü • Örnek : • Örnek olarak elimizde Ynin türevi var diyelim. • Burada y bağımlı değişken ve t varsayılan bağımsız değişkendir. • Çözüm : >>dsolve('Dy = t*y') ans = C2*exp(t^2/2)

5 DSOLVE – Diferansiyel Çözücü • >>dsolve('Dx = -a*x') ans = C2/exp(a*t) >>dsolve('Df = f + sin(t)') ans = C4*exp(t) - sin(t)/2 - cos(t)/2

6 DSOLVE – Diferansiyel Çözücü • Birinci türev Dy, ikinci türev D2y ile gösterilir. • Örnek 1 : • y''-3y'+2y = sin x. • dsolve('D2y-3*Dy+2*y=sin(x)', 'x')

7 DSOLVE – Diferansiyel Çözücü • Örnek 1: • Eğer başlangıç değerleri varsa, • dsolve('D2y-3*Dy+2*y=sin(x)', 'y(0)=1', 'Dy(0)=-1', 'x') • dsolve('D2y+y=1','y(0)=0','y(1)=1')

8 DSOLVE – Diferansiyel Çözücü • Örnek 2: • d 2 y/dx 2 -2dy/dx -3y=x 2 • Eşitliğinin diferansiyelini hesaplamak istersek. • >> dsolve('D2y - 2*Dy - 3*y=x^2', 'x')

9 DSOLVE – Diferansiyel Çözücü • Örnek 2: • Aynı denklem, eğer başlangıç değerleri ile hesaplamak istersek, • d2y/dx2 -2dy/dx -3y=x2, • y(0)=0 ve x=1 noktasında dy/dx =1 ise • dsolve('D2y - 2*Dy - 3*y=x^2','y(0)=0, Dy(1)=1','x')

10 DSOLVE – Diferansiyel Çözücü • Örnek 2: • Eğer başlangıç değerleri varsa, • d2y/dx2 -2dy/dx -3y=0 • y(0)=a ve y(1)=b ise • >> dsolve('D2y-2*Dy-3*y=0','y(0)=a, y(1)=b')

11 DSOLVE – Diferansiyel Çözücü • Örnek 3: • d2y/dt2+y=4cos(t) ve • y(pi/2)=2pi ve t=pi/2 noktasında, dy/dt=-3 ise • dsolve('D2y+y=4*cos(t)', 'y(pi/2)=2*pi, Dy(pi/2)=-3')


"DİFERANSİYEL Matlab ile Sayısal Diferansiyel. Diferansiyel Denklemler Diferansiyelin Tanımı : Bağımlı değişkenlerin bağımsız değişkenlere göre değişim." indir ppt

Benzer bir sunumlar


Google Reklamları