Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Verilerin Mahremiyeti ve Faydaya Dönüştürülmesi Teknolojik Bakış Açısı Denemesi Erkay Savaş, Yücel Saygın Sabancı Üniversitesi.

Benzer bir sunumlar


... konulu sunumlar: "Verilerin Mahremiyeti ve Faydaya Dönüştürülmesi Teknolojik Bakış Açısı Denemesi Erkay Savaş, Yücel Saygın Sabancı Üniversitesi."— Sunum transkripti:

1 Verilerin Mahremiyeti ve Faydaya Dönüştürülmesi Teknolojik Bakış Açısı Denemesi Erkay Savaş, Yücel Saygın Sabancı Üniversitesi

2 Konuşma Planı  Mahremiyetin Tanımı  Mahremiyet ve Sistemlerin Güvenilirliği  Mahremiyetin Önemi ve Güncelliği  Mahremiyeti Ortadan Kaldıran Örnekler  Fayda ve Mahremiyet İkilemi  Mahremiyeti Koruyucu Teknik ve Yöntemler  Yasal Düzenlemeler ve Mahremiyet  Bir Tasarım Parametresi olarak Mahremiyet  MODAP Projesi Tanıtımı  Sonuç

3 Mahremiyet Nedir?  İnsanların temel (anayasal) haklarından biri  Yalnız bırakılma hakkı  Kişisel veriler açısından mahremiyet:  Veri sahiplerine bu verilerle ilgili ne yapılacağı konusunda inisiyatif vermek.  İnisiyatif: karar verme yetkisi  Veri sahibi kimdir?

4 Büyük Resimde Mahremiyet KURUMSAL MAHREMİYET GÜVENLİK (SECURITY) EMNİYET (SAFETY) SALDIRILAR (THREATS) KİŞİSEL MAHREMİYET (PRIVACY) GÜVENİLİRLİK (DEPENDABILITY)

5 Neden Bu Kadar Önemli ve Güncel?  Teknoloji günlük hayatımızın ayrılmaz bir parçası oldu  Telsiz ve Telli Bilgisayar Ağları  Akıllı Telefonlar, RFID Etiketleri, Bilgisayarlar, Güvenlik Kameraları  Kişisel veriler 10 yıl öncesine göre çok daha hızlı, kolay ve ucuza toplanabiliyor.  İnternette ziyaret ettiğimiz siteler, aramalarda kullandığımız anahtar sözcükler  Yer (lokasyon) bilgisi (akıllı telefonlar, RFID etiketler)  İşlemler (e-ticaret, POS…)  E-postalarınız (reklam için gmail tarafından taranıyor)  Sosyal Ağlar (isteyerek ya da istemeden kişisel bilgilerin kontrolsüz yayılması)

6 Casus ve Tarihçi  Casus (ya da dedektif/paparazzi) kem bakışları  Tek bir bireyin – ya da küçük bir grubun – davranışları/alışkanlıkları/zafiyetleri hakkında bilgi edinmeye çalışır  İstismara açık bir pozisyondur  Tarihçi, arkeolog, ya da bilim insanının hüsnü nazarı  Daha büyük insan topluluklarının davranışları hakkında bilgi toplamaktır  Böyle bir çalışmanın amacı, bu toplulukların dinamiklerini keşfetmek ve yaşama biçimlerini anlamaya çalışmaktır  Genel bir fayda yaratmak için çalışır.

7 Naif Bir Yaklaşım  Kişisel verilerin analizi için bireylerin kimlik bilgilerinin bilinmesine gerek yoktur  Kimlik bilgilerinin rasgele seçilmiş sayılarla değiştirilerek gizlenmesi  Ancak kişiler hakkında toplanan birçok veri bir araya getirildiğinde kimlik belirlenmiş olur  Örneğin yaş, cinsiyet, semt kişileri ayırt etmede kullanılabilir.

8 Thelma Arnold Vakası  Ağustos 2006, AOL kullanıcı loglarını yayınladı  3 aylık süre  20 million web sorgusu  AOL kullanıcısı  AOL hatasını fark etti ve logları kaldırdı  Veri kişilere ait kimlik bilgilerini içermiyordu.  Ama insanlar genelde kendileri, arkadaşları ve aileleri hakkında araştırma yaparlar.

9 Thelma Arnold Vakası  Kimlik no’su olan anonim bir kullanıcı aşağıdaki sorgu kelimelerini kullanmış  “numb fingers”  “60 single men”  “dog that urinates on everything”  “landscapers in Lilburn, Ga”  “Arnold” isimli bir kaç kişi  Bir muhabir bu sorguları yapan kişinin  Thelma Arnold adında 62 yaşında, dul bir kadın olduğunu, Georgia eyaletinin Lilburn şehrinde yaşadığını, köpekleri sevdiğini ve arkadaşlarının hastalıkları konusunda İnternet’te araştırma yaptığını ortaya çıkartıyor.

10 Veritabanlarındaki Kayıtların İlintilendirilmesi Cambridge Massachusetts seçmen kayıt bilgileri  54,805 kişi Posta kodu ve doğum tarihi birleştirildiğinde veri kayıtlarının %69’u tek kişiye bağlanabilir (ABD) Yine ABD, posta kodu, doğum tarihi ve cinsiyet birleştirildiğinde bu oran %87’e çıkar. Massachusetts bölgesi verileri kullanıldığına: Vali’nin sağlık bilgilerine ulaşıldı (posta kodu, doğum tarihi ve cinsiyet bilgileri kullanılarak) Bu durum kimlik bilgilerini saklayarak veri yayınlama metotlarının gözden geçirilmesini gerektirdi ve bu konuda araştırmalar çoğaldı

11 Yarı Kimlik Bilgileri

12 Örnek Önlemler

13 Mobil Teknolojiler  GPS, GSM ve RFID teknolojileri ile yer bilgisi hassas bir şekilde tespit edilebilmekte  Yeni fırsatlar  Google Latitude, foursquare, vb. lokasyon bilgisini kullanan yeni mobil uygulamalar  Türkiye’de Turkcell pusula, tamnerede.com  ….  Tehlikeler  Gezdiğimiz yerler,  Yaşadığımız ya da çalıştığımız yer  Buluştuğumuz kişiler  ….

14 Fırsatları değerlendirirken mahremiyetin korunması  Verileri ekonomik ya da araştırma amacıyla yayınlamak  Veri toplarken yapacağımız analiz doğrultusunda yeteri kadar toplamak, gereksiz detayda veri toplamaktan kaçınmak.  İlk yapmamız gereken, kimlik bilgilerini gizlemek  Ama bu yeterli değil

15 Konum bilgisi Kullanıcıların konum bilgileri, onlar hakkında birçok şey ele verir O yüzden kimlik bilgilerini gizlesek bile Her gün sabah belli yerden başlayıp bir saat sonra belli bir yerde duran birisi ve aynı kişi akşam başladığı yere dönüyorsa Bu kişinin nerede yaşadığı ve nerede çalıştığından yola çıkarak diğer zamanlarda nerede olduğu bilgisine erişebiliriz O yüzden konum bilgisi kişileri rahatlıkla belirlemek için kullanılabilir

16 Mahremiyeti Koruyan Teknikler  Veri yayınlamak için bir mahremiyet standardı gerekiyor  Verilerin istatistiksel özelliklerinin bozulmadan karıştırılması, yer değiştirilmesi ve gürültü eklenmesi  Bilgi ve/veya hassasiyet kaybı,  K. dereceden anonimleştirme  Bir veri tabanında aynı bilgilere sahip en az k kişi olmasının sağlanması için “genelleştirme” ve “silme” işlemlerinin uygulanması  K-anonimliği sağlayan algoritmalar ve sistemler geliştirmek gerekir, tabi bunu yaparken veri kalitesinin de korunması gereklidir.  Şifreleme teknikleri  Şifrelenmiş veri üzerinden analiz yapabilme

17 İkilem (Dichotomy)  Mahremiyet mi?  Genel Fayda mı?  Her ikisi bir arada var olabilir.  Farklı bilimsel disiplinlerin doğuşu  Mahremiyeti koruyan veri madenciliği (“Privacy Preserving Data Mining”)  Mahremiyeti koruyan veri yönetimi (“Privacy Preserving Data Management”)

18 Veri Madenciliği ve Yönetimi  Veri tabanları ve veri madenciliği çoğunlukla bireyler hakkındaki verilerle ilgilidir  Ham veri  bilgi  Veri madenciliği için kişisel verilerin uygulanacak yöntemler için kullanıma açılması gerekir  Veri yönetimi  Verilerin ne kadarının, kime, ne zaman, hangi şartlarda açılacağı konusundadır.  Bilimsel çalışmalar veri madenciliği ve yönetiminin mahremiyeti koruyacak şekilde yapılmasının yolunu bulabilir  Hukuksal ve diğer boyutlar (sosyal, ahlaki vb.) hariç

19 Hukuksal Düzenlemeler  Birçok firma, kurum ve kuruluş kişisel veriler toplar  Büyük hacim  yüksek hesaplama ve saklama kapasitesi  Korunması  güvenlik  Kullanımı, faydaya dönüştürülmesi  veri madenciliği ve yönetimi  Yasal düzenlemeler  Firmalar, kurum ve kuruluşlar veriler üzerindeki hak ve bunların mahremiyeti ile ilgili yükümlülüklerini bilmek isterler  Bağımsız bir otorite  Uygulanan koruma yöntemlerinin yasal düzenlemeyle uyumlu olup olmadığını kontrol eder.

20 Büyük Resim Veri Veri işleme Yasal Düzenlemeler Bilimsel/Teknik Uzmanlık Veri Koruma Otorite Fayda

21 Tasarım Parametresi olarak Mahremiyet  Privacy by Design 1. Önleyici olmak (Tepkisel ya da düzeltici değil) 2. Mahremiyet standart (default) bir özellik olmalı 3. Mahremiyet tasarım sürecinin ayrılmaz bir parçası olmalı 4. Kazan-Kazan yaklaşımı  Yasal ve makul tüm talepler karşılanmaya çalışılmalı 5. Baştan sona koruma  Verinin sisteme girişinden, çıkışına/yok edilmesine kadar koruma 6. Görünürlük ve açıklık  Kullanılan teknikler, yöntemler verilen taahhütlere uygun, denetime açık olmalı 7. Kullanıcı odaklı  İstendiğinde en kuvvetli koruma yöntemlerini kullanabilme

22 MODAP MODAP: Kısa Tanıtım  1 Eylül 2009 tarihinde başladı  Süre: 36 Ay

23 MODAP Projeye Genel Bakış  CA yani yeni bir oluşum için koordinasyon aktiviteleri  Amaç mobil veri madenciliği ve mahremiyet konularındaki araştırmaları koordine etmek  Bu amaçla bilişimcilerin yanı sıra sosyal bilimciler ve endüstride de geniş kitlelere ulaşmak.

24 Projenin Amaçları  Farkındalığın arttırılması,  Mahremiyeti koruyarak mobil veri madenciliği yapılmasına imkan tanıyacak teknik altyapının sağlanması  Gerekli yasal düzenlemelere temel olabilecek tartışmaların yapılabileceği bir platform oluşturmak.

25 MODAP Paydaşları  Sabanci Universitesi (Koordinatör)  Fraunhofer IAIS  CNR - Area Della Ricerca di Pisa  Wind Telecomunicazioni SpA  Hasselt University  EPFL - Ecole Polytechnique Fédérale de Lausanne  Université de Lausanne  University of Piraeus Research Centre  Alterra B.V.  National & Kapodistrian University of Athens  University of Milan

26 MODAP Teknoloji ve Veri Toplama

27 MODAP First Review Meeting, October 27, 2010, Istanbul Projeye Genel Bakış  GPS ve GSM verileri uzun zamandır toplanmakta  Mobil davranış izlenebilmekte

28 MODAP Yapılmak İstenenler  Mobil Veri Madenciliği : Olanaklar  Mobil Veri Madenciliği : Riskler  Veri daha çok insanla ilgilidir (nerede, kiminle, ne zaman, hangi sıklıkla oldukları, vb).  Mobil Veri Madenciliği tam anlamda kullanılmadan önce mahremiyet konusu çözümlenmelidir.  İnsanların mobil davranışlarıyla ilgili mahremiyet riskleri henüz tam olarak tartışılmamıştır.  Mobil veri madenciliğinde ilerlerken veri toplama ve yayınlamada mahremiyet ölçümleri ve standartları oluşturulmalıdır

29 MODAP  MODAP projesi, daha önceki GeoPKDD (Geographic Privacy-aware Knowledge Discovery and Delivery) adlı AB 6. Çerçeve Projesinin başarısı üzerine kurulmuştur Öncesi

30 GeoPKDD

31 MODAP MODAP: Hedef  Teknik ve teknik olmayan kişiler arasındaki boşluğu ortadan kaldırmak

32 MODAP WG2 - UYGULAMALAR WG3 - VERİ TOPLAMA WG4 - VERİ DEPOLAMA WG5 - MOBIL PATERNLER WG6 - GÖRSEL ANALİZ WG1 - MAHREMİYET GÖZLEMEVİ

33 Sonuç  Mahremiyeti koruyan yöntemler sistemin genel güvenilirliğini artırıcı bir yaklaşımdır.  Teknik uzmanlar  Var olan yasal düzenlemelerle uyumlu teknik isterlerin/gereksinimlerin belirlenmesi  Veri koruma otoritesi  Denetim  Danışma  Bilimsel/teknik bilgi birikimi  Sakıncalı durumların belirlenmesi  Yeni koruma yöntemlerin bulunması  Farkındalık yaratılması


"Verilerin Mahremiyeti ve Faydaya Dönüştürülmesi Teknolojik Bakış Açısı Denemesi Erkay Savaş, Yücel Saygın Sabancı Üniversitesi." indir ppt

Benzer bir sunumlar


Google Reklamları