Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.

Slides:



Advertisements
Benzer bir sunumlar
İstatistik Tahmin ve Güven aralıkları
Advertisements

Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Sabit Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Farklı örnek büyüklükleri ( n ) ve farklı populasyonlar için ’nın örnekleme dağılışı.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIMI
Prof. Dr. Hüseyin BAŞLIGİL
KOŞULLU ÖNGÖRÜMLEME.
THY ANALİZLERİ Ki – Kare Testi
İKİDEN ÇOK (K) ÖRNEKLEM TESTLERİ
Bağımlı Kukla Değişkenler
GÖRÜNÜRDE İLİŞKİSİZ REGRESYON MODELLERİ
ÇOKLU REGRESYON MODELİ
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
Hatalarda Normal Dağılım
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
ÇOKLU DOĞRUSAL BAĞLANTI
İSTATİSTİKTE GÜVEN ARALIĞI VE HATALAR
KRUSKAL WALLIS VARYANS ANALİZİ
DOĞRUSAL OLMAYAN REGRESYON MODELLERİ…
İyi Bir Modelin Özellikleri
ÇOKLU DOĞRUSAL BAĞLANTI
Otokorelasyon ut = r ut-1 + et -1 < r < +1 Yt = a + bXt + ut 
OTOKORELASYON.
Otokorelasyon Y t =  +  X t + u t  u t =  u t-1 +  t -1 <  < +1 Birinci dereceden Otokorelasyon Cov (u t,u s )  0  Birinci Dereceden Otoregressif.
OTOKORELASYON.
KUKLA DEĞİŞKENLİ MODELLER
Tüketim Gelir
ORTAK FAKTÖR TESTİ VE DİNAMİK MODEL SPESİFİKASYONU
Sabit Terimsiz Bağlanım Modeli
Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
Mehmet Vedat PAZARLIOĞLU
…ÇOKLU REGRESYON MODELİ…
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
HİPOTEZ TESTLERİNE GİRİŞ
Maliye’de SPSS Uygulamaları
İstatistik Tahmin ve Güven aralıkları
İSTATİSTİKTE TAHMİN ve HİPOTEZ TESTLERİ İSTATİSTİK
Bölüm 7 Coklu regresyon.
Bağımlı Kukla Değişkenler
İSTATİSTİK II Hipotez Testleri 3.
1 KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller.
İSTATİSTİK II Örnekleme Dağılışları & Tahminleyicilerin Özellikleri.
OTOKORELASYON.
Bağımlı Kukla Değişkenler 1 Bağımlı değişken özünde iki değer alabiliyorsa yani bir özelliğin varlığı ya da yokluğu söz konusu ise bu durumda bağımlı kukla.
Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı.
OLASILIK ve İSTATİSTİK
1 KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller.
PANEL VERİ ANALİZİ.
ZAMAN SERİLERİ EKONOMETRİSİ I : DURAĞANLIK, BİRİM KÖKLER
İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ
Hatalarda Normal Dağılım
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Hatalarda Normal Dağılım
Öğr. Gör. Zeynep KÖSE Hasan Kalyoncu Üniversitesi İktisat Bölümü
Bağımlı Kukla Değişkenler
Bağımlı Kukla Değişkenler
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
İSTATİSTİK II Hipotez Testleri 1.
Tüketim Gelir
Bağımlı Kukla Değişkenler
Tam Logaritmik Fonksiyon
İyi Bir Modelin Özellikleri
Bağımlı Kukla Değişkenler
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
NİŞANTAŞI ÜNİVERSİTESİ
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.
Sunum transkripti:

Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1

Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  i 2  Farklı Varyans Hata Zaman 2

Farklı Varyans ile Karşılaşılan Durumlar Kesit Verilerinde. Kar dağıtım modellerinde. Sektör modellerinde. Ücret modellerinde. Deneme - Yanılma modellerinde. 3

Farklı Varyansı Gözardı Etmenin Sonuçlar Tahminci Özelliklerine etkisi. Tahminciler sapmasız ve tutarlıdırlar. ancak etkin değildirler. Hipotez testleri üzerine etkisi. Tahminciler minimum varyanslı olma özelliklerini kaybettiklerinden. bunlara bağlı olarak elde edilen t ve F istatistiklerine ve elde edilen güven aralıklarına güvenilemeyecektir. Öngörümleme üzerine etkisi. Önceden değerleri sapmalı olacaktır. 4

Parametre Tahmincilerinin Özellikleri 1.Sapmasızlık Anakütle regresyon modeli Sapma nedeni ile  i nin beklenen değeri sıfırdan farklı ise. 5

Parametre Tahmincilerinin Özellikleri 1.Sapmasızlık 6

Parametre Tahmincilerinin Özellikleri 2.Etkinlik Modelde sabit varyans varsayımının geçerli olmaması durumunda parametre tahmincileri  0 * ve  1 * olsun.  0 * ve  1 * ın varyanslarınn doğrusal sapmasız tahmin yöntemi ile belirlenmesi: Doğrusallık şartı gereği: 7

2.Etkinlik in beklenen değeri ve varyansı: 8

3.Tutarlılık  ’nin tutarlı tahmincisidir. 9

3.Tutarlılık 10

Farklı Varyansın Tesbit Edilmesi Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile. 11

Grafik Yöntem 12

Grafik Yöntem 13

Grafik Yöntem 14

Sıra Korelasyonu Testi 1.Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = ? s.d.=? 3.Aşama t tab =? 4.Aşama H 0 hipotezi reddedilebilir t hes > t tab 15

Sıra Korelasyonu Testi Y X eXsXs eses didi di2di  d i 2 =112 16

Sıra Korelasyonu Testi = Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = 0.05 s.d.= 8 3.Aşama t tab = = Aşama H 0 hipotezi reddedilemez. t hes < t tab 17

Goldfeld-Quandt Testi Y X 2s X 3... X k Y = b 1 + b 2 X 2 + b 3 X b k X k + u I.Alt Örnek n 1 II.Alt Örnek n 2 Çıkarılan Gözlemler Y I = b 11 + b 21 X 2 + b 31 X b k1 X k + u Y II = b 12 + b 22 X 2 + b 32 X b k2 X k + u n(1/6) < c < n(1/3)  e 1 2 =?  e 2 2 =? 18

Goldfeld-Quandt Testi 1.Aşama H 0 : Eşit Varyans H 1 : Farklı Varyans 2.Aşama  = ? 3.Aşama F tab =? 4.Aşama H 0 hipotezi reddedilebilir F hes > F tab 19

lnMaas = b 1 + b 2 Yıl + b 3 Yıl 2 Goldfeld-Quandt Test Dependent Variable: lnMaas Included observations: 222 VariableCoefficientStd. Errort-StatisticProb. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

1.alt örnek sonuçları: Goldfeld-Quandt Test Dependent Variable: lnmaas Sample: 1 75 Included observations: 75 VariableCoefficientStd. Errort-StatisticProb. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

Goldfeld-Quandt Test 2.Altörnek Sonuçları: Dependent Variable: lnmaas Sample: Included observations: 75 VariableCoefficientStd. Errort-StatisticProb. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

Goldfeld-Quandt Testi 1.Aşama H 0 : Eşit Varyans H 1 : Farklı Varyans 2.Aşama  = Aşama 1.43<F tab < Aşama H 0 hipotezi reddedilebilir F hes > F tab =

Breusch – Pagan Testi Y i = b 1 + b 2 X 2i + b 3 X 3i +……+ b k X ki +u i (1) 1.Aşama (1) Nolu denklem EKKY ile tahmin edilip. e 1. e 2. …..e n örnek hata terimleri hesaplanır. Bu e i lerden hareketle hesaplanır. 2.Aşama 3.Aşama p i = a 1 + a 2 Z 2i + a 3 Z 3i +……+ a m Z mi +v i (2) RBD = ? 24

Breusch – Pagan Testi 4.Aşama 5.Aşama H 0 : a 2 = a 3 =…..=a m = 0 (Eşit varyans) H 1 : En az biri sıfırdan farklıdır. (Farklı varyans) H 0 reddedilir. 25

YıllarGSMHITetYıllarGSMHITet Breusch – Pagan Testi IT: İthalat 26

Breusch – Pagan Testi 1.Aşama 2.Aşama 27 pi

Breusch – Pagan Testi 3.Aşama RBD = Aşama 5.Aşama H 0 : a 2 = a 3 =…..=a m = 0 (Eşit varyans) H 1 : En az biri sıfırdan farklıdır. (Farklı varyans) H 0 reddedilemez. 28

Glejser Farklı Varyans Testi 1.Aşama:Y ile X (veya X’ler) arasındaki ilişki tahmin edilerek, ilgili örnek hata terimleri e’ler bulunur. 2.Aşama:  i 2 ile ilişkili olduğu düşünülen bağımsız değişken için aşağıdaki modeller denenmektedir. 29

Glejser Farklı Varyans Testi 3.Aşama:Korelasyon katsayısı ve a’ların standat hata değerlerine göre en uyun model seçilip H 0 : a 2 = 0 H 1 : a 2 ≠ 0 test edilir. 4.Aşama: H 0 kabul edilirse eşit varyans gerçeklemiştir sonucuna varılır. 30

Glejser Farklı Varyans Testi 1.Aşama: YıllarGSMHITetYıllarGSMHITet IT: İthalat 31

2.Aşama: Glejser Farklı Varyans Testi 3.Aşama:H 0 : a 2 = 0 H 1 : a 2 ≠ 0 4.Aşama: Prob = > 0.05 H 0 reddedilemez. Eşit varyans gerçekleşmiştir. 32

White Testi Y = b 1 + b 2 X 2 + b 3 X 3 + u White Testi için yardımcı regresyon: u 2 = a 1 + a 2 X 2 + a 3 X 3 + a 4 X a 5 X a 6 X 2 X 3 + v R y 2 = ? White Testi Aşamaları: 1.Aşama 2.Aşama  = ? 3.Aşama 4.Aşama H 0 : a 2 = a 3 = a 4 = a 5 = a 6 =0 H 1 : a i ’lerin en az bir tanesi anlamlıdır s.d.= k-1  2 tab =? W= n.R y 2 = ? W >  2 tab H 0 hipotezi reddedilebilir 33

White Testi lnMaaş = yıl yıl 2 White Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : a 2 = a 3 = a 4 = a 5 =0 ; H 1 : a i ’lerin en az bir tanesi anlamlıdır s.d.=5-1=4  2 tab = W= n.R y 2 = 222(0.0901)= W >  2 tab H 0 hipotezi reddedilebilir e 2 = Yıl Yıl Yıl Yıl 4 R y 2 =

Lagrange Çarpanları(LM) Testi Y = b 1 + b 2 X 2 + b 3 X 3 + u LM testi için yardımcı regresyon: R y 2 = ? LM Testi Aşamaları: 1.Aşama 2.Aşama  = ? 3.Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.= k-1  2 tab =? LM= n.R y 2 = ? LM >  2 tab H 0 hipotezi reddedilebilir 35

Lagrange Çarpanları(LM) Testi lnmaaş = yıl yıl 2 LM Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 222(0.0537)= LM >  2 tab H 0 hipotezi reddedilebilir e 2 = (lnmaas-tah) 2 R y 2 =

Ramsey Reset Testi Y = b 1 + b 2 X 2 + b 3 X 3 +…..+b k X k + u i Ramsey Reset testi için yardımcı regresyon: H 0 : a 2 = 0 (Eşit Varyans) H 1 : a 2 ≠ 0 (Farklı Varyans) Hipotezler  hata payı ile t tablosundan bulunacak değer ile karşılaştırılır. 1.Aşama: 2.Aşama: 3.Aşama: t hes > t tab H 0 reddedilir. 37

Ramsey Reset Testi H 0 : a i = 0 (Eşit Varyans) H 1 : a i ≠ 0 (Farklı Varyans) 1.Aşama: 2.Aşama: 38

3.Aşama: t tab = t n-k,  = t 20-2, 0.05 = Ramsey Reset Testi 4.Aşama: t hesap = < t tab = H o reddedilemez 39

Park Testi  i 2 bilinmediğinden bunun yerine hata kareler toplamı e i 2 kullanılır. 40

Park Testi 1.Aşama: 2.Aşama: H 0 :  = 0 (Eşit Varyans) H 0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t hes > t tab H 0 reddedilir. 41

Park Testi 1.Aşama: 2.Aşama: H 0 :  = 0 (Eşit Varyans) H 0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t tab = t 18, 0.01 = t hes < t tab H 0 reddedilemez. 42

UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile SayısıYXu YXu

UYGULAMA: Y i =  0 +  1 X i +  i modeli için sabit varyans varsayımının geçerli olup olmadığını Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile. 44

Grafik Yöntem 45

Sıra Korelasyonu Testi 1.Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = 0.05 s.d.=? 3.Aşama t tab =? 4.Aşama H 0 hipotezi reddedilebilir t hes > t tab 46

Sıra Korelasyonu Testi 1.Aşama H 0 :  = 0 H 1 :   0 2.Aşama  = 0.05 s.d.= 30 t tab = = Aşama H 0 hipotezi reddedilemez. t hes < t tab 47

Goldfeld-Quandt Testi c = 32 / 5 = gözlem atılacak. ( gözlemler) 13 gözlemden oluşan iki grup için modeller gözlemler için Y i = X i gözlemler için Y i = X i 48

Goldfeld-Quandt Testi 1.Aşama H 0 : Eşit Varyans H 1 : Farklı Varyans 2.Aşama  = Aşama F tab = Aşama H 0 hipotezi reddedilebilir F hes > F tab 49

Breusch – Pagan Testi 1.Aşama 2.Aşama 50

Breusch – Pagan Testi 3.Aşama RBD = Aşama 5.Aşama H 0 : a 2 = a 3 =…..=a m = 0 (Eşit varyans) H 1 : En az biri sıfırdan farklıdır. (Farklı varyans) H 0 reddedilebilir. 51

1.Aşama: Glejser Farklı Varyans Testi 2.Aşama:H 0 : a 2 = 0 H 1 : a 2 ≠ 0 4.Aşama: t hes > t tab H 0 reddedilebilir. Eşit varyans gerçekleşmemiştir. 3.Aşama:  = 0.05 n –k = 32 – 2 =30 t tab =

White Testi White Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : a 2 = a 3 = 0 ; H 1 : a i ’lerin en az bir tanesi anlamlıdır s.d.=3-1=2  2 tab =5.99 W= n.R y 2 = 32(0.2296) = W >  2 tab H 0 hipotezi reddedilebilir e 2 = X – X 2 R y 2 =

Lagrange Çarpanları(LM) Testi LM Testi için yardımcı regresyon: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.201) = LM >  2 tab H 0 hipotezi reddedilebilir R y 2 =

Ramsey Reset Testi H 0 : a i = 0 (Eşit Varyans) H 1 : a i ≠ 0 (Farklı Varyans) 1.Aşama: 2.Aşama: 55 3.Aşama: t hes > t tab H 0 reddedilir.

3.Aşama: t tab = t n-k,  = t 32-2, 0.05 =2.042 Ramsey Reset Testi 4.Aşama: t hesap = > t tab = H 0 reddedilebilir. 56

Park Testi 1.Aşama: 2.Aşama: H 0 :  = 0 (Eşit Varyans) H 0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t tab = t 32-2=30, 0.05 = t hes < t tab H 0 reddedilemez. 57

Farklı Varyans

 nin BİLİNMESİ HALİ FARKLI VARYANSI ORTADAN KALDIRMA YOLLARI  nin BİLİNMEMESİ HALİ

 nin BİLİNMESİ HALİ Y i = b 1 + b 2 X i + u i Genelleştirilmiş EKKY(GEKKY)

 Sabit terimi yoktur.  İki tane bağımsız değişken vardır.

Genelleştirilmiş EKKY(GEKKY)

EKKY ve GEKKY Arasındaki Fark EKKY GEKKY min

 nin BİLİNMEMESİ HALİ 1.HAL: LOGARİTMİK DÖNÜŞÜMLER 2.HAL:

 nin BİLİNMEMESİ HALİ 3.HAL:

4.HAL:  nin BİLİNMEMESİ HALİ bölünür

5.HAL:  nin BİLİNMEMESİ HALİ

UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile SayısıYXu YXu

1.HAL: LOGARİTMİK DÖNÜŞÜMLER 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.0178) = LM <  2 tab H 0 hipotezi reddedilemez.

2.HAL: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.0509) = LM <  2 tab H 0 hipotezi reddedilemez.

3.HAL: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.2365) = LM >  2 tab H 0 hipotezi reddedilebilir.

5.HAL: 1.Aşama 2.Aşama  = Aşama 4.Aşama H 0 : b = 0 H 1 : b  0 s.d.=2-1=1  2 tab = LM= n.R y 2 = 32(0.0290) = LM <  2 tab H 0 hipotezi reddedilemez.