Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin.

Slides:



Advertisements
Benzer bir sunumlar
BENZETİM Prof.Dr.Berna Dengiz 8. Ders.
Advertisements

İLİŞKİLERİ İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.
Hatalarda Normal Dağılım
H ATALARDA N ORMAL D AĞıLıM EKK tahmincilerinin olasılık dağılımları u i ’nin olasılık dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için.
ÇOKLU DOĞRUSAL BAĞLANTI
Hatalarda Normal Dağılım
EŞANLI DENKLEMLİ MODELLERİN ÇÖZÜM YÖNTEMLERİ I: MATRİSSİZ ÇÖZÜM:
Normal Dağılım.
KOŞULLU ÖNGÖRÜMLEME.
Koentegrasyon Bir çok makro iktisadi zaman serisi stokastik ya da deterministik trend içermektedir. Bu tür serileri, durağanlığı sağlanıncaya kadar farkını.
THY ANALİZLERİ Ki – Kare Testi
Bağımlı Kukla Değişkenler
GÖRÜNÜRDE İLİŞKİSİZ REGRESYON MODELLERİ
ÇOKLU REGRESYON MODELİ
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
Hatalarda Normal Dağılım
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
EŞANLI DENKLEMLİ MODELLER. Eşanlı denklem sisteminde, Y den X e ve X den Y ye karşılıklı iki yönlü etki vardır. Y ile X arasındaki karşılıklı ilişki nedeniyle.
ÇOKLU DOĞRUSAL BAĞLANTI
DOĞRUSAL OLMAYAN REGRESYON MODELLERİ…
İyi Bir Modelin Özellikleri
ÇOKLU DOĞRUSAL BAĞLANTI
Otokorelasyon ut = r ut-1 + et -1 < r < +1 Yt = a + bXt + ut 
OTOKORELASYON.
Otokorelasyon Y t =  +  X t + u t  u t =  u t-1 +  t -1 <  < +1 Birinci dereceden Otokorelasyon Cov (u t,u s )  0  Birinci Dereceden Otoregressif.
OTOKORELASYON.
KUKLA DEĞİŞKENLİ MODELLER
Tüketim Gelir
ORTAK FAKTÖR TESTİ VE DİNAMİK MODEL SPESİFİKASYONU
Sabit Terimsiz Bağlanım Modeli
Meta Analizinde Son Gelişmeler
SÜREKLİ ŞANS DEĞİŞKENLERİ
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
Mehmet Vedat PAZARLIOĞLU
…ÇOKLU REGRESYON MODELİ…
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
Maliye’de SPSS Uygulamaları
Bölüm 7 Coklu regresyon.
Bağımlı Kukla Değişkenler
Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis.
Korelasyon testleri Pearson korelasyon testi Spearman korelasyon testi Regresyon analizi Basit doğrusal regresyon Çoklu doğrusal regresyon BBY252 Araştırma.
1 KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller.
Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis.
OTOKORELASYON.
Bağımlı Kukla Değişkenler 1 Bağımlı değişken özünde iki değer alabiliyorsa yani bir özelliğin varlığı ya da yokluğu söz konusu ise bu durumda bağımlı kukla.
Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı.
OLASILIK ve İSTATİSTİK
1 KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller.
PANEL VERİ ANALİZİ.
Atatürk Üniversitesi Tıp Fakültesi
VERİLERİN DÜZENLENMESİ VE ORGANİZASYONU
ZAMAN SERİLERİ EKONOMETRİSİ I : DURAĞANLIK, BİRİM KÖKLER
İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ
Hatalarda Normal Dağılım
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Hatalarda Normal Dağılım
Ünite 10: Regresyon Analizi
Öğr. Gör. Zeynep KÖSE Hasan Kalyoncu Üniversitesi İktisat Bölümü
Bağımlı Kukla Değişkenler
Bağımlı Kukla Değişkenler
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Tüketim Gelir
Bağımlı Kukla Değişkenler
İyi Bir Modelin Özellikleri
Bağımlı Kukla Değişkenler
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.
Korelasyon testleri Pearson korelasyon testi Spearman korelasyon testi Regresyon analizi Basit doğrusal regresyon Çoklu doğrusal regresyon BBY606 Araştırma.
Sunum transkripti:

Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin geçerliliği u i ’nin normal dağılmasına bağlıdır. Çünkü u i normal dağılıyorsa, EKK b 1 ve b 2 ’nin tahmincileri de normal dağılır. Normal dağılmış değişkenleri olan bir doğrusal fonksiyonun kendisi de NORMAL DAĞILIR.

Normal Dağılım u i değerleri - + E(u i )=0

  Uygunluk Testi 1.Aşama H 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama  = ? 3.Aşama   ,sd =? 4.Aşama   hes >   ,sd H 0 hipotezi reddedilebilir S.d.=? G:Gözlenen değer B:Beklenen değer

  Uygunluk Testi E(u)= 0 %68 -- ++ +2  -2  %  -3  %

Ortalamadan (-σ,+σ) kadar uzaklaşıldığında eğrinin altında kalan alan normal dağılımda %68 lik bir alanı ifade etmktedir. Ortalama etrafında çan eğrisi simetrik olduğu için %68’in yarısı (%34) ortalamanın sağında, geri kalan yarısı (%34) ise solunda yer almaktadır. Ortalamadan (-2σ,+2σ) kadar uzaklaşıldığında eğrinin altında kalan alan normal dağılımda %95.5 lik bir alanı ifade etmktedir.Benzer şekilde %95.5’in yarısı (%48) ortalamanın sağında geri kalan yarısı (%48) ise solunda yer almaktadır.Bu durumda her iki taraf için (σ,2σ) arasında kalan alan %14 olmaktadır. Ortalamadan (-3σ,+3σ) kadar uzaklaşıldığında eğrinin altında kalan alan normal dağılımda %95.5 lik bir alanı ifade etmktedir.Benzer şekilde %99.7’in yarısı (%50) ortalamanın sağında geri kalan yarısı (%50) ise solunda yer almaktadır.Bu durumda her iki taraf için (2σ,3σ) arasında kalan alan %2 olmaktadır.

  Uygunluk Testi s = 12,138 n=

  Uygunluk Testi s = 12,138 n= Teorikte %2’lik olan bu alan n=10 olduğunda 0.2’ye karşılık gelmektedir Gözlenen Değerler Beklenen Değerler

  Uygunluk Testi s = 12,138 n= Teorikte %0.02’lik olan bu alan n=50 olduğunda 1’e karşılık gelmektedir

  Uygunluk Testi = H 0 hipotezi rededilemez, Hatalar normal dağılmaktadır.

Jarque-Bera Normallik Testi 1.Aşama H 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama  = ? 3.Aşama   ,sd =? 4.Aşama JB >   ,sd H 0 hipotezi reddedilebilir Sd=?

Jarque-Bera Normallik Testi

ee2e2 e3e3 e4e  e 2 =  e 3 =  e 4 =  e = 0

Jarque-Bera Normallik Testi = = = =  2 = = 2.09

Jarque-Bera Normallik Testi 1.AşamaH 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama  = Aşama   ,sd = Aşama JB <   ,sd H 0 hipotezi reddedilemez. Sd=

ÇOKLU DOĞRUSALLIĞIN ANLAMI Çoklu doğrusal bağlantı; Bağımsız değişkenler arasında doğrusal (yada doğrusala yakın) ilişki olmasıdır. 1.İse parametreler belirlenemez hale gelir. Her bir parametre için ayrı ayrı sayısal değerler bulmak zorlaşır. 2. ise bu değişkenlere ortogonal değişkenler denir ve katsayıların tahmininde çoklu doğrusal bağlantı açısından hiçbir sorun yoktur. 3. ise tam çoklu doğrusal bağlantı yoktur.

Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı

ÇOKLU DOĞRUSALLIĞIN NEDENLERİ  İktisadi değişkenlerin zaman içerisinde birlikte değişme eğiliminde olmaları  Bazı açıklayıcı değişkenlerin gecikmeli değerlerinin ilişkide ayrı birer etmen olarak kullanılmasıdır.  Hem zaman serilerinde hem de kesit verilerinde kullanılmaktadır.

Çoklu Doğrusal Bağlantı Y = b 1 + b 2 X 2 + b 3 X 3 + u y = b 2 x 2 + b 3 x 3 + u X 3 = 2 X 2

Çoklu Doğrusal Bağlantı Araba Bakım Masrafları Model Tahminleri DeğişkenlerModel AModel BModel C Sabit Yas Km s.d. Düzeltilmiş- R (-5.98) 7.35 (22.16) (-5.91) (18.27) (-7.06) (9.58) 7.29 (0.06) Parantez içinde verilen ifadeler ilgili katsayın t istatistikleridir.

Çoklu Doğrusal Bağlantının Ortaya Çıkardığı Sonuçlar Regresyon Katsayılarının Değerleri Belirsiz Olur, Regresyon Katsayılarının Varyansları Büyür, t-istatistikleri azalır, Güven Aralıkları Büyür, R 2 Olduğundan Büyük Çıkar, Katsayı Tahmincileri ve Standart Hataları Verilerdeki Küçük değişmelerden Önemli Ölçüde Etkilenirler, Teorik beklentinin tersi bir durum ortaya çıkar

ÇOKLU DOĞRUSALLIĞIN DOĞURDUĞU SONUÇLAR a) Katsayıları tahminleri belirlenemez. b)Tahminlerin standart hataları sonsuz büyük olur.

Çoklu Doğrusal Bağlantının Varlığının Tesbit Edilmesi Tahmin edilen modelin t-istatistikleri anlamsız iken, R 2 yüksek ve katsayıların topluca testi sonucu F istatistiğinin anlamlı bulunması, Bağımsız değişkenler arasında ikişerli kuvvetli ilişki bulunması Yardımcı Regresyonlar Kriteri Y = b 1 + b 2 X 2 + b 3 X 3 +b 4 X 4 + u X 2 = a 12 + a 32 X 3 +a 42 X 4 + v 2 X 3 = a 13 + a 23 X 2 +a 43 X 4 + v 3 X 4 = a 14 + a 24 X 2 +a 34 X 3 + v 4

Çoklu Doğrusal Bağlantının Varlığının Tesbit Edilmesi Maksimum-Minimum has (=öz) değerler ve şartlı indeks Varyans Artış faktörü Ridge Regresyon yöntemi

Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 1.Ön Bilgi Yöntemi Y = b 1 + b 2 X 2 + b 3 X 3 +b 4 X 4 + ub 3 = 0.2b 2 Y = b 1 + b 2 X b 2 X 3 +b 4 X 4 + u Y = b 1 + b 2 (X X 3 )+b 4 X 4 + u Y = b 1 + b 2 X*+ b 4 X 4 + u

Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 2.Kesit ve Zaman Serilerinin Birleştirilmesi lnY = b 1 + b 2 lnP tA + b 3 lnI t +b 4 lnP tB + u lnY - b 3 lnI t = b 1 + b 2 lnP tA +b 4 lnP tB + u lnY* = b 1 + b 2 lnP tA +b 4 lnP tB + u 3.Bazı Değişkenlerin Modelden Çıkarılması, 4.Değişkenleri Dönüştürme Yöntemi, 5.Ek veya Yeni Örnek Verisi Temin etme, 6.Diğer Yöntemler.

Ev Talebi Model Tahminleri DeğişkenlerModel AModel BModel C s.d. Sabit Faiz Nüfus GSMH Düzeltilmiş-R (-2.40) (-3.87) (3.61) (1.80) (-3.87) 0.91 (3.64) (0.41) (-3.18) (-0.27) 0.52 (0.54) r(GSMH,Nüfus)=0.99r(GSMH,faiz)=0.88 r(Nüfus,faiz)= 0.91

Araba Bakım Masrafları Model Tahminleri DeğişkenlerModel AModel BModel C Sabit Yas Km s.d. Düzeltilmiş- R (-5.98) 7.35 (22.16) (-5.91) (18.27) (-7.06) (9.58) 7.29 (0.06) Km = Yaş (8.74)(88.11) Bakım = Yaş ( Yaş) = -626, Yaş

Dependent Variable: HOUSING Method: Least Squares Sample: Included observations: 23 VariableCoefficientStd. Errort-StatisticProb. C GNP INTRATE POP UNEMP R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ÇOKLU DOĞRUSAL BAĞLANTININ TESPİTİ– YARDIMCI REGRESYON DENKLEMİNİN KULLANILMASI

Yardımcı Regresyon Modelleri için F testi 1.Aşama: H 0 : Çoklu doğrusal bağlantı yoktur. H 1 : Çoklu doğrusal bağlantı vardır. F 0.05,(5-2=3),(23-5+1=19) = Aşama: 3.Aşama: 4.Aşama: F hes > F tab H 0 reddedilir.

1.Aşama: H 0 : Çoklu doğrusal bağlantı yoktur. H 1 : Çoklu doğrusal bağlantı vardır. 2.Aşama: 3.Aşama: 4.Aşama: F hes > F tab H 0 reddedilir. F 0.05,(3),(19) =3.13

1.Aşama: H 0 : Çoklu doğrusal bağlantı yoktur. H 1 : Çoklu doğrusal bağlantı vardır. 2.Aşama: 3.Aşama: 4.Aşama : F hes > F tab H 0 reddedilir. F 0.05,(3),(19) =3.13

1.Aşama:H 0 : Çoklu doğrusal bağlantı yoktur. H 1 : Çoklu doğrusal bağlantı vardır. 2.Aşama: 3.Aşama: 4.Aşama:F hes > F tab H 0 reddedilir. F 0.05,(3),(19) =3.13