Sabit Terimsiz Bağlanım Modeli

Slides:



Advertisements
Benzer bir sunumlar
NEO-KLASİK (SOLOW-SWAN) BÜYÜME MODELİ
Advertisements

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR*
MİLLİ GELİR VE İSTİHDAM TEORİSİ
SERMAYE BİRİKİMİ VE KALKINMA
FAİZ ORANI DAVRANIŞI.
EŞANLI DENKLEMLİ MODELLER. Eşanlı denklem sisteminde, Y den X e ve X den Y ye karşılıklı iki yönlü etki vardır. Y ile X arasındaki karşılıklı ilişki nedeniyle.
9. BÖLÜM Faktör Piyasası-1.
Büyümenin Bileşenleri Yada Belirleyicileri
Risk Tanımı ve Ölçülmesi
ENDEKS MODELLERİ Markowitz’in modelini kullanarak karar vermek durumunda olan bir yatırımcı tek tek hisse senetlerinin beklenen getirilerini, standart.
Sabit sermaye yatırım giderleri
TEMEL EKONOMİ 1. GİRİŞ Temel Ekonomi - Prof. Dr. Tümay ERTEK.
PORTFÖY OPTİMİZASYONU
Tüketim tasarruf ve Yatırım
23 Toplam Harcama ve Denge Çıktı Düzeyi BÖLÜM İÇERİĞİ
Bu bölümde İktisadi büyümenin anlamını,
TASARRUF Tasarruf Fonksiyonu
Risk, Kazanç ve Sermaye Fırsat Maliyeti
ÇOKLU REGRESYON MODELİ
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
EŞANLI DENKLEMLİ MODELLER. Eşanlı denklem sisteminde, Y den X e ve X den Y ye karşılıklı iki yönlü etki vardır. Y ile X arasındaki karşılıklı ilişki nedeniyle.
ÇOKLU DOĞRUSAL BAĞLANTI
Bazı terimler Gelir Maliyetler Karlar
Klasik ve Keynesçi İktisat
CASE FAIR OSTER Prepared by: Fernando Quijano & Shelly Tefft.
DOĞRUSAL OLMAYAN REGRESYON MODELLERİ…
ÇOKLU DOĞRUSAL BAĞLANTI
Otokorelasyon ut = r ut-1 + et -1 < r < +1 Yt = a + bXt + ut 
OTOKORELASYON.
Otokorelasyon Y t =  +  X t + u t  u t =  u t-1 +  t -1 <  < +1 Birinci dereceden Otokorelasyon Cov (u t,u s )  0  Birinci Dereceden Otoregressif.
Tüketim Gelir
Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
…ÇOKLU REGRESYON MODELİ…
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
Doç. Dr. Ahmet UĞUR İnönü Üniversitesi İktisat Bölümü
GSYH ve TÜFE: Makroekonominin İzlenmesi
TÜKETİMİ DİĞER ETKİLEYEN FAKTÖRLER
Arbitraj Fiyatlama Teorisi
Firma Teorisi Tam Rekabet Piyasası.
Sermaye Varlık Fiyatlama Modeli (CAPM)
Sermaye Maliyeti *Firmalar sadece özkaynaklarını projelerin
Bölüm 6:İki Degişkenli Dogrusal Regresyon Modelinin Uzantıları
 Bölüm 6: Talep Tahmini Kaynak: Yönetim Ekonomisi – Prof. Dr. İ. Özer Ertuna.
Toplam çıktı Bir ekonomide belirli bir dönemde üretilen (arz edilen) toplam mal ve hizmet miktarıdır. toplam gelir Belirli bir dönemde üretim faktörlerinin.
Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı.
Etkin sınır (Efficient Frontier)
MAKRO EKONOMİYE GİRİŞ VE TEMEL KAVRAMLAR
MAKRO İKTİSAT EKONOMİNİN ÖLÇÜLMESİ 1: HASILANIN ÖLÇÜLMESİ
KLASİK MAKRO EKONOMİK MODEL
Hatalarda Normal Dağılım
EŞANLI DENKLEMLİ MODELLER
MAKRO İKTİSAT I BÖLÜM 9 UZUN DÖNEMDE HASILA VE FİYAT DÜZEYİ: KLASİK MAKRO MODEL YRD. DOÇ. DR. OKTAY KIZILKAYA.
Para, Banka ve Finansal Piyasaları Niye Çalışıyoruz?
ÖMÜR BOYU GELİR HİPOTEZİ
Alternatif Makro Modeller: Klasik İktisat
İKTİSADA GİRİŞ I DERS 11 Y.Doç.Dr.Umut Öneş.
BÖLÜM 12 Nakit Akışı Tahmini ve Risk Analizi. BÖLÜM 12 Nakit Akışı Tahmini ve Risk Analizi.
Tüketim Gelir
İKTİSADA GİRİŞ I DERS 12 Y.Doç.Dr.Umut Öneş.
İçerik GELİRİN BÖLÜNMESİ DEVAM ( FAİZ, KAR).
İÇİNDEKİLER Tahvil ve Hisse Senetlerinin Değerlemesi, Risk ve Getiri Analizi Varlıkların Değerlemesi Tahvil Değerlemesi Hisse Senetlerinin Değerlemesi.
BİLGİ EKONOMİSİNİN MALİYETLER ÜZERİNDEKİ ETKİSİNİN TEORİK ANALİZİ
2. PİYASA EKONOMİSİNE GENEL BİR BAKIŞ
Tam Logaritmik Fonksiyon
…ÇOKLU REGRESYON MODELİ…
NİŞANTAŞI ÜNİVERSİTESİ
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.
Sunum transkripti:

Sabit Terimsiz Bağlanım Modeli

Sabit Terimsiz Bağlanım Modeli Sabit Terimsiz Bağlanım Modelinin Özellikleri 1) Sabit terimsiz regresyonda Σei lerin sıfıra eşit olması şart değildir. 2) Sabit terimsiz regresyonda r2 belirlilik katsayısı uygun bir ölçü değildir. Çünkü bu katsayının sabit terimsiz regresyonda negatif değer alması söz konusu olabilmektedir.

Sabit Terimsiz Bağlanım Model Örnekleri İmalat Sanayi Mamülleri Üretim Fonksiyonları Üretim faktörleri girdileri sıfırken çıktı yani üretim de sıfır olmalıdır. Orijinden Geçen Uzun Dönem Tüketim Fonksiyonu b1 sabitinin pozitif değeri bize ekonomik birimlerin gelir seviyeleri sıfırken daha önce yaptıkları tasarrufları tükettiklerini ve daha önceki dönemlerde üretilmiş mallardan faydalandıklarını ifade etmektedir. Kapalı bir ekonominin daha önce ürettiği tüketim malları stoku yoksa, b1 değeri sıfırdan büyük olamaz. Bu halde gelir seviyesi sıfıra indiğinde tüketim geliri aşacak, bu da negatif bir tasarrufa karşılık gelecektir.

Sabit Terimsiz Bağlanım Model Örnekleri Gelirden bağımsız ve kısıtlanması mümkün olmayan tüketim seviyesi b1'e bağımsız tüketim harcamaları denir. Bu durum kısa dönemde söz konusu olur. Buna karşılık, daha önceki birikmiş tasarruflara bağlı olarak belli bir tüketim seviyesi b1 in varlığının kabulünün uzun dönemde hiç bir anlamı olmaz.

Sabit Terimsiz Bağlanım Model Örnekleri Portföy Teorisi Bir yatırım projesinin toplam riski, iki riskten oluşur: Sistematik risk veya piyasa riski ve sistematik olmayan risk. Sistematik olmayan risk firmanın yönetim şartları, firmalar arası rekabet, grevler ve tüketici davranışlarındaki değişmeler gibi faktörlere bağlıdır. Sistematik risk , Piyasa faiz oranlarının değişmesi, enflasyon riski, finansal piyasalardaki değişmeler gibi faktörlere bağlıdır

Sabit Terimsiz Bağlanım Model Örnekleri Finansal Varlıkları Fiyatlama Modelinin Beta Katsayısı, projelerin sistematik riskini ölçmeye yarar. Finansal Varlıklar Fiyatlama Modeli : Ri - rf = ßi (Rm - rf) + ui Ri = i finansal varlığı verim oranı Rm = Piyasa portföyü verim oranı (riskli varlıklardan oluşan) rf = Risksiz piyasa verim oranı (hazine bonosunun 90 günlük verim oranı gibi) ßi = Finansal varlığın sistematik riski (Beta katsayısı) ui = hata terimi

Sabit Terimsiz Bağlanım Model Örnekleri Yi = ai + ßi Xi + ui Yi = Şirketin yıllık verimlilik oranı (%) Xi = Piyasa portföyü yıllık verimlilik oranı (%) ßi = Eğim katsayısı, portföy teorisinde Beta katsayısı (Sistematik Risk) Yi = 1.0899 Xi s (bi): (0.1916) , Se2 = 3425.285 t (5.6884) Yi= 1.2797 + 1.0691 Xi s (bi) (7.6886) (0.2383) t = (0.1664) (4.4860)

Tam Logaritmik Fonksiyon X3 X2 Y X2 b2>1 0<b2<1 Y2 b2<0 Y1 (X3 sabit tutulduğunda)

Tam Logaritmik Fonksiyon lnY =lnb1 + b2 lnX2+ b3 lnX3 + ... + bk lnXk + u lne Y* =b1 *+ b2 X2*+ b3 X3* + ... + bk Xk* + u

Tam Logaritmik Fonksiyon

Uygulama 4.3 (207-210)

Uygulama 4.3 (207-210)

Uygulama 4.3 (207-210)

Uygulama 4.3 (207-210) = 4.0458 = 4.9615 Sx*2 =7.3986 Sy*x*2 =2.6911

Uygulama 4.3 (207-210) = 0.3637 = 4.0458 - (0.3637) 4.9615 = 2.2413 [ln(9.4046) = 2.2413]

Üretim Fonksiyonu Y= Üretim X2=Emek ; X3=Sermaye = Emeğin Marjinal Verimliliği = Sermayenin Marjinal Verimliliği lnY = -3.4485 + 1.5255 lnX2 + 0.4858 lnX3 (t) (-1.43) (2.87) (4.82) n=15 Düz-R2= 0.8738

Yarı-Logaritmik Fonksiyon Log-Doğ Model(Üstel Model)

Yarı-Logaritmik Fonksiyon Log-Doğ Model(Üstel Model) lnY = b1 +b2 X+ u = ( b2Y ) = b2 X

Artış Hızı Modeli Log-Doğ Model(Üstel Model) lnY = b1 +b2 t + u r = (Antilog b2 - 1) . 100 Y= İş hacmi(1983-1988) r = (Antilog 0.131 - 1) . 100 = (1.13997 - 1) . 100 = (0.13997 1) . 100 = % 14

Ücret Modeli Log-Doğ Model(Üstel Model) Aşağıdaki ücret modeli Uygulama 9.3’den alınmıştır.(s.427) Modelde: Y:Haftalık Kazanç ($) ; X2: Tecrübe ; X3 : Eğitim Kategorisi lnY = 1.19 + 0.033 X2 + 0.074 X3

Yarı-Logaritmik Fonksiyon Doğ - Log Model Y = b1 +b2 lnX+ u

Yarı-Logaritmik Fonksiyon Doğ - Log Model Y = b1 +b2 lnX+ u

Hedonik Model Doğ - Log Model Y = b1 +b2 lnX2+ b3 lnX3 + u Fiyat = -1.749.97 + 299.97 ln(m2) - 145.09 ln(YatakOda) (t) (-6.8) (7.5) (-1.7) Prob. [0.1148] Düz-R2= 0.826 sd=11

Polinomial Fonksiyonlar Y = b1 + b2 X + b3 X2 + b4 X3 + ... + bk+1 Xk + u Kuadratik Model: Y = b1 + b2 X + b3 X2 + u = b2 + 2b3 X = 0  X0= -b2 / 2b3 Eğer b3<0 ise X0 noktası maksimumdur = 2b3 Eğer b3>0 ise X0 noktası minimumdur

Polinomial Fonksiyonlar Kuadratik Model OM= Ortalama Maliyet ; Çıktı =Üretimİndeksi GMİ= Girdi Maliyetleri İndeksi OM = 10.52 - 0.175 Çıktı + 0.0009 (Çıktı)2 + 0.02 GMİ (t) (14.3) (-9.7) (7.8) (14.45) Düz-R2=0.978 sd=16

Polinomial Fonksiyonlar Kübik Model TM= Toplam Maliyet ;Q =Üretim Miktarı

Polinomial Fonksiyonlar Kübik Model Y = b1 + b2 X + b3 X2 + b4 X3 + u TM = 141.76 + 63.47 Q - 12.96 Q2 + 0.94 Q3 s(bi) (6.37) (4.78) (0.98) (0.059) R2 =0.998 sd=6

Yeni Bağımsız Değişkenler Ekleme Testi (s.285-293) Y=b1 + b2 X2 + b3 X3 + u (SR) Y=b1 + b2 X2 + b3 X3 + b4 X4 + b5 X5 + u (SM) 1.Aşama H0: b4 = b5 = 0 H1: bi  0 Fa,f1,f2 =? 2.Aşama a = ? f1=? f2=? 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

Yeni Bağımsız Değişkenler Ekleme Testi (s.285-293)

İki regresyon Parametresinin Eşitliğinin Testi (s.293-294) Y=b1 + b2 X2 + b3 X3 + b4 X4 + b5 X5 + u 1.Aşama H0: b4 = b5 H1: b4  b5 ta,sd =? 2.Aşama a = ? 3.Aşama 4.Aşama |thes | > | ttab | H0 hipotezi reddedilebilir

İki regresyon Parametresinin Eşitliğinin Testi (Ramu Ramanathan:Örnek 4.10) Ct= Reel Tüketim Harcamaları (1992 fiyatlarıyla) Yt=GSMH (1992 fiyatlarıyla) Wt= Ücretler (cari fiyatlarla) Index= 1992 bazlı fiyat indeks serisi Wts=Ücretler (1992 fiyatlarıyla) Pt = Yt - Wts

İki regresyon Parametresinin Eşitliğinin Testi Ct = -222.16 + 0.693 Wts +0.736 Pt Düz-R2= 0.999 s.d=33 ESS=38977 Varyans-Kovaryans Matrisi C W P C 382.3085 -0.036446 -0.149065 W -0.036446 0.001063 -0.001552 P -0.149065 -0.001552 0.002384

İki regresyon Parametresinin Eşitliğinin Testi 1.Aşama H0: b2 = b3 H1: b2  b3 2.Aşama ta,sd = t0.05,36-3=? a = 0.05 t0.05,40=2.021 < t0.05,36-3 < t0.05,30=2.042 3.Aşama 4.Aşama |thes | > | ttab | H0 hipotezi reddedilebilir

CHOW TESTLERİ İki Örneğe ait Denklemlerin Eşitliğinin Testi(s.294-296) (Tüm Dönem) Y=b1 + b2 X2 + b3 X3 + u (1.Dönem) Y=b1 + b2 X2 + b3 X3 + u Y=b1 + b2 X2 + b3 X3 + u (2.Dönem) 1.Aşama H0: İki Denklem Birbirinin Aynıdır H1: İki Denklem BirbirindenFarklıdır Fa,f1,f2 =? a = ? f1=k f2=n1+n2-2k 2.Aşama 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

CHOW TESTLERİ İki Örneğe ait Denklemlerin Eşitliğinin Testi(s.294-296)

CHOW TESTLERİ Yapısal Testlerde Yetersiz Gözlem Durumu(s.298-299) (Tüm Dönem) Y=b1 + b2 X2 + b3 X3 + u (1.Dönem; Yetersiz Gözlem) Y=b1 + b2 X2 + b3 X3 + u Y=b1 + b2 X2 + b3 X3 + u (2.Dönem) 1.Aşama H0: İki Denklem Birbirinin Aynıdır H1: İki Denklem BirbirindenFarklıdır Fa,f1,f2 =? a = ? f1=n1 f2=n2-k 2.Aşama 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

CHOW TESTLERİ Yapısal Testlerde Yetersiz Gözlem Durumu(s.298-299)

Örnek Büyüklüğü Arttırıldığında Regresyon Katsayılarının Aynı Kalıp Kalmadığının Testi (İlk Dönem) Y=b1 + b2 X2 + b3 X3 + u (Genişletilmiş Dönem) Y=b1 + b2 X2 + b3 X3 + u 1.Aşama H0: bi=bi (Parametreler Değişmemiştir) H1: bibi (Parametreler Değişmiştir) 2.Aşama f2=n1-k Fa,f1,f2 =? a = ? f1=n2 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

Parametrelere Konan Sınırlamaların Testi Y=b1 + b2 X2 + b3 X3 + b4 X4 + b5 X5 + u (SM) Y=b1 + b2 X2 + b3 X3 + u (SR) H0: Sınırlamalar Gerçekleşmiştir 1.Aşama H1: Sınırlamalar Gerçekleşmemiştir Fa,f1,f2 =? 2.Aşama a = ? f1=c f2=n-k 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir