Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. tahminleri için uygulanan testlerin geçerliliği u i ’nin normal dağılmasına bağlıdır. Çünkü u i normal dağılıyorsa, EKK b 1 ve b 2 ’nin tahmincileri de normal dağılır. Normal dağılmış değişkenleri olan bir doğrusal fonksiyonun kendisi de NORMAL DAĞILIR.
Normal Dağılımlılık u i değerleri - + E(u i )=0
Jarque-Bera Normallik Testi 1.Aşama H 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama = ? 3.Aşama ,sd =? 4.Aşama JB > ,sd H 0 hipotezi reddedilebilir Sd=?
Jarque-Bera Normallik Testi
ee2e2 e3e3 e4e e 2 = e 3 = e 4 = e = 0
Jarque-Bera Normallik Testi = = = = 2 = = 2.09
Jarque-Bera Normallik Testi 1.AşamaH 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama = Aşama ,sd = Aşama JB < ,sd H 0 hipotezi reddedilemez. Sd=
Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı
Çoklu Doğrusal Bağlantı Y = b 1 + b 2 X 2 + b 3 X 3 + u y = b 2 x 2 + b 3 x 3 + u X 3 = 2 X 2
Çoklu Doğrusal Bağlantı Araba Bakım Masrafları Model Tahminleri DeğişkenlerModel AModel BModel C Sabit Yas Km s.d. Düzeltilmiş- R (-5.98) 7.35 (22.16) (-5.91) (18.27) (-7.06) (9.58) 7.29 (0.06)
Çoklu Doğrusal Bağlantının Ortaya Çıkardığı Sonuçlar Regresyon Katsayılarının Değerleri Belirsiz Olur, Regresyon Katsayılarının Varyansları Büyür, t-istatistikleri azalır, Güven Aralıkları Büyür, R 2 Olduğundan Büyük Çıkar, Katsayı Tahmincileri ve Standart Hataları Verilerdeki Küçük değişmelerden Önemli Ölçüde Etkilenirler,
Çoklu Doğrusal Bağlantının Varlığının Tesbit Edilmesi Tahmin edilen modelin t-istatistikleri anlamsız iken, R 2 yüksek ve katsayıların topluca testi sonucu F istatistiğinin anlamlı bulunması, Bağımsız değişkenler arasında ikişerli kuvvetli ilişki bulunması Yardımcı Regresyonlar Kriteri Y = b 1 + b 2 X 2 + b 3 X 3 +b 4 X 4 + u X 2 = a 12 + a 32 X 3 +a 42 X 4 + v 2 X 3 = a 13 + a 23 X 2 +a 43 X 4 + v 3 X 4 = a 14 + a 24 X 2 +a 34 X 3 + v 4
Çoklu Doğrusal Bağlantının Varlığının Tesbit Edilmesi Maksimum-Minimum has (=öz) değerler ve şartlı indeks Varyans Artış faktörü Ridge Regresyon yöntemi
Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 1.Ön Bilgi Yöntemi Y = b 1 + b 2 X 2 + b 3 X 3 +b 4 X 4 + ub 3 = 0.2b 2 Y = b 1 + b 2 X b 2 X 3 +b 4 X 4 + u Y = b 1 + b 2 (X X 3 )+b 4 X 4 + u Y = b 1 + b 2 X*+ b 4 X 4 + u
Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 2.Kesit ve Zaman Serilerinin Birleştirilmesi lnY = b 1 + b 2 lnP tA + b 3 lnI t +b 4 lnP tB + u lnY - b 3 lnI t = b 1 + b 2 lnP tA +b 4 lnP tB + u lnY* = b 1 + b 2 lnP tA +b 4 lnP tB + u 3.Bazı Değişkenlerin Modelden Çıkarılması, 4.Değişkenleri Dönüştürme Yöntemi, 5.Ek veya Yeni Örnek Verisi Temin etme, 6.Diğer Yöntemler.
Ev Talebi Model Tahminleri DeğişkenlerModel AModel BModel C s.d. Sabit Faiz Nüfus GSMH Düzeltilmiş-R (-2.40) (-3.87) (3.61) (1.80) (-3.87) 0.91 (3.64) (0.41) (-3.18) (-0.27) 0.52 (0.54) r(GSMH,Nüfus)=0.99r(GSMH,faiz)=0.88 r(Nüfus,faiz)= 0.91
Km = Yaş (8.74)(88.11) Bakım = Yaş ( Yaş = -626, Yaş