Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.

Slides:



Advertisements
Benzer bir sunumlar
BENZETİM Prof.Dr.Berna Dengiz 8. Ders.
Advertisements

İLİŞKİLERİ İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ
İstatistik Tahmin ve Güven aralıkları
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.
Hatalarda Normal Dağılım
H ATALARDA N ORMAL D AĞıLıM EKK tahmincilerinin olasılık dağılımları u i ’nin olasılık dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için.
ÇOKLU DOĞRUSAL BAĞLANTI
Regresyon.
Hatalarda Normal Dağılım
EŞANLI DENKLEMLİ MODELLERİN ÇÖZÜM YÖNTEMLERİ I: MATRİSSİZ ÇÖZÜM:
İlişkisel Veri Analizi
BENZETİM Prof.Dr.Berna Dengiz 9. Ders.
KOŞULLU ÖNGÖRÜMLEME.
Koentegrasyon Bir çok makro iktisadi zaman serisi stokastik ya da deterministik trend içermektedir. Bu tür serileri, durağanlığı sağlanıncaya kadar farkını.
THY ANALİZLERİ Ki – Kare Testi
(Enter ve Stepwise Yöntemi)
Bağımlı Kukla Değişkenler
GÖRÜNÜRDE İLİŞKİSİZ REGRESYON MODELLERİ
ÇOKLU REGRESYON MODELİ
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
Hatalarda Normal Dağılım
EŞANLI DENKLEMLİ MODELLER. Eşanlı denklem sisteminde, Y den X e ve X den Y ye karşılıklı iki yönlü etki vardır. Y ile X arasındaki karşılıklı ilişki nedeniyle.
ÇOKLU DOĞRUSAL BAĞLANTI
DOĞRUSAL OLMAYAN REGRESYON MODELLERİ…
İyi Bir Modelin Özellikleri
TOBİT MODELLER.
ÇOKLU DOĞRUSAL BAĞLANTI
Otokorelasyon ut = r ut-1 + et -1 < r < +1 Yt = a + bXt + ut 
OTOKORELASYON.
Otokorelasyon Y t =  +  X t + u t  u t =  u t-1 +  t -1 <  < +1 Birinci dereceden Otokorelasyon Cov (u t,u s )  0  Birinci Dereceden Otoregressif.
Tüketim Gelir
ORTAK FAKTÖR TESTİ VE DİNAMİK MODEL SPESİFİKASYONU
Sabit Terimsiz Bağlanım Modeli
Regresyon (Bağlanım) Çözümlemesi
Yrd. Doç. Dr. Hamit ACEMOĞLU
Meta Analizinde Son Gelişmeler
Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
ÖNGÖRÜMLEME (Forecasting)
…ÇOKLU REGRESYON MODELİ…
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
HİPOTEZ TESTLERİNE GİRİŞ
Bölüm 6:İki Degişkenli Dogrusal Regresyon Modelinin Uzantıları
Maliye’de SPSS Uygulamaları
Bölüm 7 Coklu regresyon.
İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ Regresyon Y ile X (X ler) arasındaki ortalama ilişkinin matematik fonksiyonla ifadesidir. X’e bağlı olarak.
Çıkarsamalı İstatistik Yöntemler
Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis.
Korelasyon testleri Pearson korelasyon testi Spearman korelasyon testi Regresyon analizi Basit doğrusal regresyon Çoklu doğrusal regresyon BBY252 Araştırma.
Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis.
Kesinlik (Siz) Biyoistatistik Hayatınızdan kesitlerle bildikleriniz ve bilmediklerinize yolculuk... Zekeriya AKTÜRK, Prof. Dr.
Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı.
OLASILIK ve İSTATİSTİK
Türkiye’de Okun yasasının Geçerliliğinin İncelenmesi: Ekonometrik Bir Analiz Adnan Menderes Üniversitesi Betül Ünal Doç. Dr. Mehmet Mercan.
REGRESYON VE KORELASYON ANALİZLERİ
İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ
Hatalarda Normal Dağılım
ÜSTEL DÜZLEŞTİRME YÖNTEMİ
Numerik Veri Tek Grup Prof. Dr. Hamit ACEMOĞLU.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Hatalarda Normal Dağılım
Ünite 10: Regresyon Analizi
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
KORELASYON VE DOGRUSAL REGRESYON
Tüketim Gelir
Tam Logaritmik Fonksiyon
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.
Korelasyon testleri Pearson korelasyon testi Spearman korelasyon testi Regresyon analizi Basit doğrusal regresyon Çoklu doğrusal regresyon BBY606 Araştırma.
Sunum transkripti:

Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin geçerliliği u i ’nin normal dağılmasına bağlıdır. Çünkü u i normal dağılıyorsa, EKK b 1 ve b 2 ’nin tahmincileri de normal dağılır. Normal dağılmış değişkenleri olan bir doğrusal fonksiyonun kendisi de NORMAL DAĞILIR.

Normal Dağılımlılık u i değerleri - + E(u i )=0

Jarque-Bera Normallik Testi 1.Aşama H 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama  = ? 3.Aşama   ,sd =? 4.Aşama JB >   ,sd H 0 hipotezi reddedilebilir Sd=?

Jarque-Bera Normallik Testi

ee2e2 e3e3 e4e  e 2 =  e 3 =  e 4 =  e = 0

Jarque-Bera Normallik Testi = = = =  2 = = 2.09

Jarque-Bera Normallik Testi 1.AşamaH 0 : u i ’ler normal dağılımlıdır H 1 : u i ’ler normal dağılımlı değildir 2.Aşama  = Aşama   ,sd = Aşama JB <   ,sd H 0 hipotezi reddedilemez. Sd=

Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı

Çoklu Doğrusal Bağlantı Y = b 1 + b 2 X 2 + b 3 X 3 + u y = b 2 x 2 + b 3 x 3 + u X 3 = 2 X 2

Çoklu Doğrusal Bağlantı Araba Bakım Masrafları Model Tahminleri DeğişkenlerModel AModel BModel C Sabit Yas Km s.d. Düzeltilmiş- R (-5.98) 7.35 (22.16) (-5.91) (18.27) (-7.06) (9.58) 7.29 (0.06)

Çoklu Doğrusal Bağlantının Ortaya Çıkardığı Sonuçlar Regresyon Katsayılarının Değerleri Belirsiz Olur, Regresyon Katsayılarının Varyansları Büyür, t-istatistikleri azalır, Güven Aralıkları Büyür, R 2 Olduğundan Büyük Çıkar, Katsayı Tahmincileri ve Standart Hataları Verilerdeki Küçük değişmelerden Önemli Ölçüde Etkilenirler,

Çoklu Doğrusal Bağlantının Varlığının Tesbit Edilmesi Tahmin edilen modelin t-istatistikleri anlamsız iken, R 2 yüksek ve katsayıların topluca testi sonucu F istatistiğinin anlamlı bulunması, Bağımsız değişkenler arasında ikişerli kuvvetli ilişki bulunması Yardımcı Regresyonlar Kriteri Y = b 1 + b 2 X 2 + b 3 X 3 +b 4 X 4 + u X 2 = a 12 + a 32 X 3 +a 42 X 4 + v 2 X 3 = a 13 + a 23 X 2 +a 43 X 4 + v 3 X 4 = a 14 + a 24 X 2 +a 34 X 3 + v 4

Çoklu Doğrusal Bağlantının Varlığının Tesbit Edilmesi Maksimum-Minimum has (=öz) değerler ve şartlı indeks Varyans Artış faktörü Ridge Regresyon yöntemi

Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 1.Ön Bilgi Yöntemi Y = b 1 + b 2 X 2 + b 3 X 3 +b 4 X 4 + ub 3 = 0.2b 2 Y = b 1 + b 2 X b 2 X 3 +b 4 X 4 + u Y = b 1 + b 2 (X X 3 )+b 4 X 4 + u Y = b 1 + b 2 X*+ b 4 X 4 + u

Çoklu Doğrusal Bağlantı Problemini Ortadan Kaldırma Yolları 2.Kesit ve Zaman Serilerinin Birleştirilmesi lnY = b 1 + b 2 lnP tA + b 3 lnI t +b 4 lnP tB + u lnY - b 3 lnI t = b 1 + b 2 lnP tA +b 4 lnP tB + u lnY* = b 1 + b 2 lnP tA +b 4 lnP tB + u 3.Bazı Değişkenlerin Modelden Çıkarılması, 4.Değişkenleri Dönüştürme Yöntemi, 5.Ek veya Yeni Örnek Verisi Temin etme, 6.Diğer Yöntemler.

Ev Talebi Model Tahminleri DeğişkenlerModel AModel BModel C s.d. Sabit Faiz Nüfus GSMH Düzeltilmiş-R (-2.40) (-3.87) (3.61) (1.80) (-3.87) 0.91 (3.64) (0.41) (-3.18) (-0.27) 0.52 (0.54) r(GSMH,Nüfus)=0.99r(GSMH,faiz)=0.88 r(Nüfus,faiz)= 0.91

Km = Yaş (8.74)(88.11) Bakım = Yaş ( Yaş = -626, Yaş