Srinivasa RAMANUJAN DERLEYEN : Ali Taner DAĞ MATEMATİK

Slides:



Advertisements
Benzer bir sunumlar
Grup Adı: BALIK Tarih: 26/04/2010
Advertisements

OLASILIK Hatırlatma : Örnek: Bir torbada 1 den 10 a kadar numaralanmış etiketler bulunmaktadır. Bir çekilişte asal sayı olan bir etiket çekme olasılığı.
Matematik Günleri.
Babamın ayakkabı imalathanesi var
Bilim Adamı Albert Einstein.
? 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … ? ? ?.
RASYONEL SAYILARDA İŞLEMLER
9. ADİ DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ
ÜÇGENLERİN TARİHÇESİ.
İNSAN-ÇEVRE İLİŞKİLERİNİN TARTIŞILDIĞI DÖNEM
Prepared by Cendel Karaman A Deep Approach to Turkish Teaching and Learning Wisconsin Center for Education Research, University of Wisconsin-Madison.
FONKSİYONLAR ve GRAFİKLER
ISAAC NEWTON.
Pİ SAYISININ TARİHÇESİ
Çizge Algoritmaları.
İstatistiksel Sınıflandırma
MOTİVASYON.
Matematik Cahit arf.
GODFREY HAROLD HARDY( )
Bölüm 4: Sayısal İntegral
George Friedrich Bernhard Riemann (1826–1866)
JOHN NAPIER
Bir Fransız matematikçisi olan Henri Leon Lebesque, Fransa'da Beauvais kentinde 28 Haziran 1875 günü doğdu. Çok iyi bir öğrenim gördü ve 1897 yılında Paris.
BOLZANO, Bernhard ( ).
EULER ( ).
T Ü R E V TÜREV ALMA KURALLARI.
SÜREKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK YOĞUNLUK FONKSİYONLARI
Ondalık Kesirler ● Paydası 10, 100, 1000… olan kesirlere ondalık kesir denir , , , , ● Yukarıdaki kesirler birer ondalık.
MATEMATİK PERFORMANS ÖDEVİ
KESİRLERİ TANIYORUM Kesir nedir? Kesir çeşitleri
BROOK TAYLOR ( ).
Carl Friedrich Gauss Carl Friedrich Gauss ya da Gauß (30 Nisan 1777– 23 Şubat 1855), Alman kökenli matematikçi ve bilim adamı.
ROLF NEVANLİNNA Nevanlinna ailesi, Finlandiya’da Hame eyaletinde Renko kentinden geldi. Bilinen en eski dedesi kilisenin işlerinde çalışan biriydi. Bundan.
TÜRKÇE / Düşünce Yazıları (Biyografi-Otobiyografi)
Sadece 1’e ve kendisine bölünen sayılardır.
Jacques Hadamard: ( ) Analizin babalarından ünlü matematikçi
HAZIRLAYAN:AYÇA AŞKIN
KİŞİSEL ÇABA- BAŞARILI İŞ YAŞAMI
HAYAT BİLGİSİ SORULARI.
Ters Hiperbolik Fonksiyonlar
Yıldız Teknik Üniversitesi Makina Müh. Bölümü
Matematik Dersine Nasıl Çalışmalıyız??
Bu slayt, tarafından hazırlanmıştır.
MATEMATİKSEL KAVRAMLARA GİRİŞ
KESİRLER ONDALIK KESİRLERİN TANIMI ONDALIK KESİR ÖRNEKLERİ
10-14 Şubat Fonksiyonların Grafiği
ONDALIK KESİRLERDE 4 İŞLEM
ASAL SAYILAR HAZIRLAYAN EYÜP GÜNER.
Ondalık Kesirlerde Çıkarma İşlemi
İLKÖĞRETİM MATEMATİK 8.SINIF
9. SINIF MATEMATİK DERSİ ÖĞRENME ALANI:CEBİR BÖLÜM :SAYILAR
Sayısal Analiz Sayısal Türev
Sayısal Analiz Sayısal İntegral 3. Hafta
1 tane yüzlük 100 birlik 1 tane yüzlük 10 tane onluk.
Avusturyalı Fizikçi Erwin Schrödinger, de Broglie dalga denkleminin zamana ve uzaya bağlı fonksiyonunu üst düzeyde matematik denklemi hâline getirmiştir.
Rastgele Değişkenlerin Dağılımları
AD:TÜLİN SOYAD:KAYA SINIF:7/B NO:168 KONU:Pİ SAYISI DERS:MATEMATİK ÖĞRETMEN:PINAR METİN.
DİLEK DİKEÇ Matematik Öğretmeni
Ondalık Kesirler ● Paydası 10, 100, 1000… olan kesirlere ondalık kesir denir , , , , ● Yukarıdaki kesirler birer ondalık.
Atatürk’ün Çocukluk Anıları
DERS 7 SAYISAL İNTEGRASYON DERS 7.1 TRAPEZOIDAL (YAMUK) KURAL
MATEMATİK DERSİNİ NASIL ÖĞRENMELİ
ŞEKİLDEKİ AĞACIN SİZE ÇAĞRIŞTIRDIĞI ŞEY NEDİR?
Sadece 1’e ve kendisine bölünen sayılardır.
HAYATIMIZ MATEMATİK. Matematik...ilk duyulduğunda çoğu insanın korktuğu aslında mantık ve zekanın ortak hareket ettiği bir bilimdir.olmazsa olmazdır hayatımızda.
doğal sayısındaki rakamların sayı değerleri toplamı kaçtır?
(Düzlem) Geometriye giriş:
Çağdaş Gelişmeler Işığında Ana Dili Öğretimi
Bilgi Yönetimi ve Matematik Önerme Mantığı
Sunum transkripti:

Srinivasa RAMANUJAN DERLEYEN : Ali Taner DAĞ 0201010007 MATEMATİK

Srinivasa RAMANUJAN 22 ARALIK 1887 26 NİSAN 1920

Srinivasa RAMANUJAN Hayatı: (22 ARALIK 1887 ERODE -26 NİSAN 1920 HİNDİSTAN) Sayılar kuramına bir çok katkıda bulunan ve partisyon fonksiyonuna ilişkin önemli buluşları olan Hintli matematikçidir. Daha önce 15 yaşındayken G. S. Carr’ın iki ciltlik Synopsis of elementery Results in Pure and Applied Mathematics (1880-86; Soyut ve Uygulamalı Matematikte Temel Bilgiler Özeti) adlı yapıtını okuması, Ramanujan’ın yaşamında bir dönüm noktası oldu.

Matematiğin 1860’lara değin gelişimini içeren bu kitaptaki 6000’i aşkın teoremin türünü kanıtlayan Ramanujan yeni teoremler ve yöntemler geliştirdi. 1903’te Madras Üniversitesinden burs kazandı, ama matematikten başka hiçbir konu ile ilgilenmediğinden başarısız oldu ve bursu ertesi yıl kesildi. Ramanujan'ın ilk makalesi Journal of the İndian Mathematical Society de (Hindistan Matematik Derneği Dergisi) 1911 de yayımlandı.

Aynı dergide üç yıl içinde 11 makalesi daha yayımlanan Ramanujan, 1913’te ünlü İngiliz matematikçi Godfrey H. Hardy ile yazışmaya başladı. Olağanüstü yeteneğinden etkilenen Hardy’nin çağrısı üzerine, Cambridge Üniversitesine bağlı Trinity College burdu ile 1914’te İngiltere’ye giden Ramanujan, Hardy’den özel ders aldı, ayrıca Hardy ile birlikte bir çok makale yazdı. Ramanujan’ın hemen tümü ile kendi kendine çalışarak kazandığı matematik bilgisi şaşılacak düzeydeydi.

üniversitede iken

Kendinden önceki katkılardan tümü ile habersiz olmasına karşın, sürekli kesirler konusunda bilgi ve ustalığı, Hardy’nin değimi ile, dünyadaki tüm matematikçileri aşacak düzeyde idi. Riemann Serilerini, eliptik integralleri, Hiper geometrik serileri ve Zeta fonksiyonuna ilişkin eşitlikleri kendi başına geliştirmiş, ıraksak serilere ilişkin özgün bir kuram ortaya koymuştu. Buna karşılık, düzenli bir matematik eğitimi görmemiş olmasından kaynaklanan temel bilgi eksiklikleri de şaşılacak düzeyde idi.

Örneğin iki katlı dönemli fonksiyonlar, ikilenik biçimlerin klasik kuramı yada Cauchy teoreminden tümü ile habersizdi; matematiksel bir kanıtın nitelik ve koşullarına ilişkin bilgisi ise çok yetersizdi. Bu nedenle, asal sayılar kuramına ilişkin teoremlerinin büyük bölümü, çok parlak görüşler içermelerine karşın tümü ile yanlıştı.

Kendi halinde bir insan hiç evlenmemiş, yaşamını bekar olarak sonlandırmış. (Bence zamanı yoktu!!! Sizce?) kendi halinde

İngiltere’de önemli çalışmalar gerçekleştiren Ramanujan’ın özellikle sayıların partisyonu konusunda önemli buluşları vardır. Makaleleri İngiliz ve kıta Avrupa’sı dergilerinde yayımlandı.1918’de Royal Society üyeliğine seçilen ilk Hintli bilim adamı oldu.

1917 de vereme yakalanan ramanujan hastalığının ağırlaşması üzerine 1919 da ülkesine döndü. Geniş kitlelerce tanınmayan, ama matematikçilerin Leonhard Euler(1907-83) ve Karl Jacobi’den (1804-51) bu yana benzeri, görülmemiş olağanüstü bir deha olarak kabul ettikleri Ramanujan ödüğünde henüz 33 yaşında idi

Srinivasa RAMANUJAN ve π sayısı Hintli matematikçi Ramanujan, 20. yüz yılılın başlarında π sayısı için üç ayrı değer bulmuştur. Ramanujan’ın bulduğu üç değer ile π sayısının gerçek değeri aşağıdaki tabloda verilmiştir.  3,14162371...  3,141592653...  3,141592654...  Gerçek π  ; 3,141592654... 

Bu yaklaşımlardan üçüncü yaklaşımın oldukça başarılı olduğu gözükmektedir. Bilgisayar teknolojisinin gelişmesiyle birlikte, bilgisayarlar yardımıyla Pi sayısının gerçek değeri daha fazla ondalık basamaklara kadar hesaplanabilmiştir. Günümüzde Pi sayısının gerçek değeri 1 trilyondan fazla ondalık basamağa kadar bilinmektedir.

HARDY VE RAMANUJAN Bu yüz yılın başında İngiliz matematikçi Hardy ile Hintli matematikçi Ramanujan’ın dostluğu sayılar teorisinde pek çok anektod bırakmıştır. Ramanujan formel bir eğitim almamış olmasına rağmen matematiği ve özellikle sayıların özelliklerini hissederek çalışmış ve bu gün de hayranlık uyandıran sonuçlar çok artmıştır. HARDY VE RAMANUJAN

Fakat sayılar teorisi, özellikler de asal sayılar teorisi, her türlü iç güdüye şiddetle direnen bir konudur. Örneğin 1 den X e kadar olan sayılar arasında kaç tane asal sayı olduğunu veren π(x) fonksiyonu ile bir İntegral ifade ile tanımlanan Li (x) fonksiyonu arasında bütün tablolarda gözlenen ilişkiye bakarak yapılacak tahminler yanlıştır Ve bu tahminlerin yanlış çıkması beklenen ilk sayılar evrendeki atomların toplam sayısından üssel olarak fazla bir sayıdır.

Hardy ile birlikte Cambridge'de

Hardy

Hardy ve Ramanujan arasında geçen kısa bir hikaye Ramanujan Putney'deki bir hastanede ölüm döşeğinde yatarken Hardy onu ziyarete giderdi. O gün de her zamanki ulaşım aracı olan taksi ile gitmişti. Ramanujan'ın yattığı odaya girdi. Hardy, konuşma başlatmaktaki her zamanki beceriksizliği ile, muhtemelen daha selamlaşmadan ve mutlaka ilk söz olarak:

- Geldiğim taksinin numarası 1729'du - Geldiğim taksinin numarası 1729'du. Bana çok alelade bir sayı gibi geldi. dedi. Ramanujan'ın buna yanıtı şuydu: - Hayır Hardy !.. Hayır Hardy !.. Çok ilginç bir sayı. İki küpün toplamı olarak iki ayrı şekilde ifade edilebilen en küçük sayı.

Gerçekten de; 12’nin küpü ile 1’in küpünün toplamı, 10 un küpü ile 9 un küpünün toplamı, Birbirine eşit yani 1729 sayısına tekabül ederler. “1729” iki küp toplamı olarak iki farklı şekilde ifade edilebilen en küçük doğal sayıdır.

Ana britannica ramanujan için ne diyor ? kısaca hayatı ;

Kısaca ramanujan ; Bir tutku dereceesinde matematikle uğraşan bir insandır. Bu tutkusu nedeniyle formel bir eğitim alamaz. Bir arkadaşının onun adına ödünç aldığı Carr tarafından yazılmış bir matematik kitabından matematik öğrenmeye başlar. Bu kitabın yazarı Carr ‘da sıra dışı bir insandır.

Kırk yaşına kadar özel matematik dersleri vererek hayatını kazanan Carr ancak kırk yaşından sonra üniversiteye yazılır ve matematik öğrenmeye başlar. Bu kitabı da üniversite yıllarında yazar. İçinde hiç ispat olmayan bu kitap her nasılsa Ramanujan’ın olduğu üniversiteye gelir ve Ramanujan daha sonra dostlarını çok sıkıntıya sokacak olan ispatsız matematik stilini bu kitaptan alır.

Ramanujan’ın Hardy ile tanışması Hardy’ye yazdığı bir mektupla ona elde ettiği formülleri göndermesi ile başlar. Daha sonraki yıllarda İngiltere’ye gelen ve önemli çalışmalar yapan Ramanujan ın ispatsız bıraktığı teoremler üzerine bu gün hala çalışılmakta ve bu teoremler teker teker ispat edilmektedir.

Ramanujan’ı onurlandırmak için basılan pullar

Srinivasa RAMANUJAN DERLEYEN : Ali Taner DAĞ 0201010007 MATEMATİK