İSTATİSTİK A. G E N E L B İ L G İ.

Slides:



Advertisements
Benzer bir sunumlar
Uygun Hipotezin Kurulması, Tip I Hata ve Tip II Hata
Advertisements

EĞİTİMDE ÖLÇME & DEĞERLENDİRME -12-
GİRİŞ BÖLÜM:1-2 VERİ ANALİZİ YL.
Sosyal Bilimlerde Araştırma Yöntemleri
HOŞGELDİNİZ ! FARUK AŞIK ZEYNEP AKÇA MURAT ŞİMŞEK
T.C. İNÖNÜ ÜNİVERSİTESİ Arapgir Meslek YÜKSEKOKULU
-Demografik- Nüfus Analizi
Atlayarak Sayalım Birer sayalım
Ölçmeyle İlgili Temel İstatistikler
ANOVA.
Diferansiyel Denklemler
HİPOTEZ TESTLERİ.
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
VOLEYBOL İNDEKS (OYUNCULARIN FİZİK YETENEKLERİNİN ÖLÇÜMÜ)
HATA TİPLERİ Karar H0 Doğru H1 Doğru H0 Kabul Doğru Karar (1 - )
Yrd. Doç. Dr. Kemal DOYMUŞ K.K.E.F İlköğretim Bölümü
Standart Normal Dağılım
Bağıl Değerlendirme Sistemi
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri
Tanımlayıcı İstatistikler
MÜH 100 İSTATİSTİK Yrd. Doç. Dr. Veysel Gazi
Bu slayt ‘ten indirilmiştir.
KIR ÇİÇEKLERİM’ E RakamlarImIz Akhisar Koleji 1/A.
CAN Özel Güvenlik Eğt. Hizmetleri canozelguvenlik.com.tr.
Tıp alanında kullanılan temel istatistiksel kavramlar
HAZIRLAYAN:SAVAŞ TURAN AKKOYUNLU İLKÖĞRETİM OKULU 2/D SINIFI
ÖLÇME VE DEĞERLENDİRME DERSİ
İki Ortalama Arasındaki Farkın Önemlilik Testi
Normal Dağılım.
Merkezi Eğilim (Yığılma) Ölçüleri
Yard. Doç. Dr. Serkan ŞENDAĞ MAKÜ 2012, BURDUR
İSTATİSTİK A. G E N E L B İ L G İ. İstatistik, elde edilen bir grup verinin belli hesaplama yöntemiyle objektif değerlendirilmesidir. Hedef - anlam vermek.
İstatistikte Bazı Temel Kavramlar
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
EĞİTİMDE NOT VERME VE DEĞERLENDİRME
OLASILIK ve OLASILIK DAĞILIMLARI
ÖNEMLİLİK TESTLERİ Dr.A.Tevfik SÜNTER
Temel İstatistik Terimler
Değişkenlik Ölçüleri.
EĞİTİMDE ÖLÇME VE DEĞERLENDİRME
Büyük ve Küçük Örneklemlerden Kestirme
4 X x X X X
ANA BABA TUTUMU ENVANTERİ
Test : 2 Konu: Çarpanlar ve Katlar
SINIF GEÇME.
Merkezi Eğilim (Yer) Ölçüleri
VERİ İŞLEME VERİ İŞLEME-4.
MATEMATİKSEL İSTATİSTİK VE OLASILIK II
Beklenen Getirinin ve Riskin Ölçülmesi
EĞİTİMDE ÖLÇME VE DEĞERLENDİRME
T - Testi Bağımsız örneklem t – Testi, bir birinden farklı örneklemlerin ölçülen ortalaması ile tahmin edilen ya da bilinen ortalamasının karşılaştırtırılmasında.
EĞİTİM ÖĞRETİM YILI SINIF GEÇME YÖNETMELİĞİ
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
Diferansiyel Denklemler
Betimleyici İstatistik – I
Ölçme Sonuçlarının Değerlendirilmesi
21 - ÖLÇME SONUÇLARI ÜZERİNE İSTATİSTİKSEL İŞLEMLER
Uygun örneklem SayISI hesaplama Power (güç) analİzİ
Merkezi Eğilim Ölçüleri
ANLAM ÇIKARTICI (KESTİRİMSEL) İSTATİSTİK
DEĞİŞİM ÖLÇÜLERİ.
İstatistiksel Analizler
DEĞİŞKENLİK ÖLÇÜLERİ.
Temel İstatistik Terimler
Sapma (Dağılma) ölçüleri
Tıp Fakültesi UYGULAMA 2
ÖLÇME-DEĞERLENDİRME 8. SINIF
DAVRANIŞ BİLİMLERİNDE İLERİ İSTATİSTİK DOKTORA
1.Hafta Haftalık Çizelge Temel Kavramlar SPSS’ e giriş
Temel İstatistik Terimler
Sunum transkripti:

İSTATİSTİK A. G E N E L B İ L G İ

A. G E N E L B İ L G İ İstatistik, belli amacla tespit edilen verilerin objektif değerlendirilmesini sağlayan bilim dalıdır. Hedef - verilere anlam kazandırmak - veri arasındaki bağlantının olup olmadığını tespit etmek - veri arasındaki farkın olup olmadığını tespit etmek

A. G E N E L B İ L G İ İstatistikte genellikle incelenen toplumdur. İstatistikte toplum kavramsal olarak 2 gruba ayrılmaktadır A. Evren – grubu temsil eden bireylerin tümüne denir B. Örneklem – evreni temsil eden küçük grup

A. G E N E L B İ L G İ Değerlendirilmesi gereken grubun belirlenmesi - rast gele - sınırlı rast gele - sistemli

A. G E N E L B İ L G İ Değişken – değişebilir değerdir Örn.: boy , ağırlık, kuvvet, ve b. Veri – değişkenin nicel ifadesidir Örn.: 70kg, 170cm, 7 kg/cm Veri serisi: verilerin toplamda oluşturduduğu grup. Örn.:55kg, 60kg, 80kg, 75kg, 70kg, 70kg, 65kg, 58kg, 68kg, 70kg, 74kg,100kg

B. MERKEZİ MEYİL VE DAGILIM - ortalama - median - mod Dağılım - yaygınlık (range) - frekans dağılımı - standart sapma

Merkezi meyil Ortalama (mean) - bir grup verinin averaj göstergesidir. M = ΣX/N, yani veri serisinin toplamı (ΣX) veri serisindeki veri sayısıyla (N) bölünerek bulunur.

Ortalama Orn.: 6, 5, 10, 2, 5, 8, 5, 1 ve 3 veri serisinin ortalaması (M) = M = (6+5+10+...)/9 = 45/9 =5.

Ortalama Kenar rakamların (veri serisinin en küçük veya en büyük rakamların) değişimiyle değişebilir 1. örn.: (6+5+10+2+5+8+5+1+3)/9=5 2. örn.: (6+5+46+2+5+8+5+1+3)/9=9 2. örnekte alınan ortalama veri serisinin kötü temsilcisidir.

Ortalama 1,2,3,5,5,5,6,8,10 ortalama = 5 1,2,3,5,5,5,6,8,46 ortalama = 9

MEDİAN Araştırma esnasında elde edilen veri serisinin en küçükten en büyük rakama kadar sıralaması sonrası sıranın ortasında yerleşerek veri serisini iki eşit bölüme ayıran rakamdır.

MEDİAN Örn. 1: Aşağıdaki 1, 2, 3, 5, 5, 5, 6, 8, 46 veri serisi için median = 5.

MEDİAN Örn. 2: 1,2,3,4 veri serisi için median = 2+3=5, 5/2=2,5

MOD Veri serisinde en sık tekrarlanan rakamdır. Yukarıdaki örnekte (1, 2, 3, 5, 5, 5, 6, 8, 46) mod = 5, çünki üç kez rastlanmaktadır.

DAĞILIM – yaygınlık (range) Dağılımın istatistiksel hesaplanması araştırma esnasında elde edilen verilere netlik kazandırmaktadır. Yaygınlık - veri serisinin en büyük rakamla en küçük rakam arasındaki farktır. Örn.: sınava katılan 10 öğrencinin puanları 40, 40, 55, 75, 50, 15, 45, 65, 35, 30 olduğunda söz konusu veri serinin yaygınlığı 60’dır (75 – 15)

DAĞILIM – dağılım sıklığı Dağılım sıklığı veya frekansı (frequency disribution) – verilerin serideki rastlantı sayısına denir. Dağılım sıklığı iki yöntemle uygulanmaktadır. a. Birisi gruplaşma yöntemi. Burada veriler gruplaştırılarak gösterilmektedir. Örn.: Sınava katılan 20 öğrenciden 31 – 50 arası puan alan öğrencilerin sayı 10’dır, 51 – 70 arası puan alan öğrencilerin sayı 6’dır ve 71 – 90 puan arası öğrencilerin sayısı 4’dir. b. Diğer yöntem “sap – ve – yaprak” ismi taşımaktadır ve en uygun olanıdır.

DAGILIM SAP YAPRAK FREKANS 2 5,7 3 0,2,4,8 4 1,1,3,3,5,7,7 7 5 0,0,1,2,4,4,5,7, 8 6 0,1,2,2,6,7 1,3,5,5,8 0,4,6

Standart Sapma Veri serisinde yer alan değerlerin merkez rakamından uzaklığını gosteren en objektif yöntemdir. Hesaplama sırasında tüm verilerin ortalamadan olan farkı tespit edilerek, tüm verileri kapsayacak bir rakam oluşur.

Standart sapma (örnek) Sınava katılan öğrencilerin ort. ± st.sap. puanı 60 ± 5 olduğu takdirde, öğrencilerin %68’nin puanı 55 – 65 arası (M ± 1s) %95’nin 50 – 70 arası (M ± 2s) % 99’nun 45 – 75 arası (M ± 3s) olacak

%68 -3s -2s -1s M +1s +2s +3s

Etki boyutu kavramı İstatistikte uygulanan etki boyutu hesaplanması 2 değişkenin bağlantı gücünü ölçmektedir. BU yöntem betimsel çalışmalarda kullanmaktadır. Örneğin, uygulanan zayıflama programı ortalama 10 kg kilo azalmasını sağlamaktadır tespiti, 10 kg etki boyutun göstergesidir. Fakat burada herbir kişinin 10 kg zayıfladığı veya yarısının 20 kg, o biri yarısını hiç zayıflamadığı düşünülebilir. Cevap hesaplanma sonucu tespit edilmektedir.

Etki boyutu (effect size) Saptanmış ortalamalar arasındaki standartize farklılığı (farkın anlamlı olduğunu) tespit eder. ES = (M1 – M2)/s M1-bir grup veri ortalaması M2 –diğer grup veri ortalaması s-standart sapma ES ≥ 0,8 farkın büyük ölçüde ANLAMLI olması, ES 0,5 civarında olduğunda farkın KISMEN ANLAM taşıdığını ve ES ≤ 0,2 olması farkın büyük ölçüde anlam taşımadığına işaret etmektedir

Etki boyutu (effect size) Örnek: Gr. 1 Gr.2 Ort. koşu mesafesi M1=3km M2=2,5km Standart sapma s1=0,114km s2=0,103km Katılımcı sayısı n1=15 n2=15 s = [ s12(n1 – 1) + s22 (n2 – 1)] / (n1 + n2 – 2) =109 ES= (3000 – 2500)/109 = 4,6, yani ES≥0,8

OLASILIK (PROBABİLİTE) p olarak simgelenmektedir 0.05 (%5) veya 0.01 (%1) olabilir α – alfa – araştırmalarda kabul olabilecek şans olasılığı (genelde %5 veya %1’dir) Tip I yanlışlığın kontrolü için kullanılır β – beta – Tip 2 yanlışlığın kontrolü içindir

İSTATİSTİKTEKİ DOĞRU VE YANLIŞ SONUÇLARIN GRAFİK PREZENTASYONU Ho doğrudur Ho yanlıştır Sonuç kabul görmüş Doğru karar Tip II yanlış (β) Sonuç red edilmiş Tip I yanlış (α)

İstatistik: T-test Araştırma esnasında elde edilen verilerin arasındaki FARKIN olup olmadığını inceler

Tanıtım T-test, 2 veri grubun ortalama (mean) değerlerin istatistiksel farklı olup olmadığını incelemektedir

“İstatistiksel fark” kavramın izahatı Her 3 durumda ortalamalar arasındaki fark aynidir Orta seviyeli değişkenlik Yüksek seviyeli değişkenlik Düşük seviyeli değişkenlik Yeşil ve mavi grupların farklı olduğu net olarak sadece alttaki grafikte gözlemlenir – aralarındaki örtüşme alanı minimaldır. Örtüşme payının %5 altında olması durumunda ortalama değerlerin istatistiksel farklı olduğu söylenilebilir.

Gruplar arasındaki fark - t-testi

Örneklem – toplum t-test hesaplanması t = (M - µ)/(sM/√n), M - örneklem ortalaması µ - toplum ortalaması sM - örneklem st.sapm, n – örneklem boyutu t = (81 – 76)/(9/√32) = 3,14

Bağımsız t-test hesaplanması

Bağımsız t-test örneği

Bağımlı t-test hesaplanması ΣD t = [NΣD2 – (ΣD)2] / (N-1) D – test sonrasıyle test öncesi alınmış sonuçların farkı N – katılımcı sayısı

Bağımlı t-test örneği

Z - SKORU

z skoru hesaplanması z = (X – M) / s X - söz konusu performans ölçümü sonucu olan veri M - takımın önceden hesaplanmış ortalaması s - takımın önceden hesaplanmış standart sapması

z skoru hesaplanması: örnek Örn.: gruptaki performans verilerine göre dikey sıçrama ortalaması 40cm ve st.sapması 6cm’iken, push-up testi için bu rakamlar 20 ve 5 çıkmıştır. Boylece 46cm’lik bir dikey sıçramanın z-skoru = Z = (46 – 40) / 6 =1,00 Push-up için ise Z = (25 – 20) / 5 = 1,00

KORELASYON Tanıtım: 2 veya daha fazla grup veri arasındaki bağlantının olup olmadığını test eden (değerlendiren) istatistik tekniğine korelasyon hesaplanması denir. Örn.: yaşın artışıyla vücut artışı arasındaki korelasyon test edilebilir. veya haftalık çalışma saat miktarıyla sınavdaki başarı puanı arasındaki korelasyona bakılabilir.

KORELASYON Korelasyonun (yani bağlantının) var olması, bir veri değişimiyle diğer verinin değişimi anlamına gelmektedir. Fakat, bu her defasında bir veri değişimin o birinin değişim sebebi olduğunun anlamına gelmez. Bu durumda her iki veri değişimi bir başka nedenle değiştiğinin göstergesidir. 

KORELASYON Örn.: Yaşlılarda yaşın artışıyla kişilerin düşme riski artmaktadır. Bu örnekte düşme riski verisi yaşın artışı verisine bağlı olsa da, onun nedeni yaştan ziyade kas oranın azalmasıdır. Korelasyon hesaplanması: Korelasyonun niceliksel değeri korelasyon katsayısıdır, r olarak belirlenir, 0 – 1 arası değişebilir. Eksi veya artı rakam şeklinde olabilir.