Açımlayıcı Faktör Analizi (AFA)

Slides:



Advertisements
Benzer bir sunumlar
Çıkarımsal İstatistik
Advertisements

Sosyal Bilimlerde Araştırma Yöntemleri
Temel Bİleşenler Analİzİ
GÜVENİRLİK ve GEÇERLİK ÇÖZÜMLEMESİ
İLİŞKİLERİ İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ
Kalibrasyon.
BİLİMSEL ARAŞTIRMA YÖNTEMLERİ
KOVARYANS ANALİZİ (ANCOVA)
Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ
R2 Belirleme Katsayısı.
ANOVA.
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
İstatistik Kavramı İstatistik; kesin olmayışlığın ışığı altında karar verme tekniğidir. Ana kitle hakkında örneklem yardımıyla tahmin çalışmalarıdır. Kitle.
SOSYAL BİLİMLERDE ARAŞTIRMA YÖNTEMLERİ KONU: FAKTÖR ANALİZİ
PARAMETRİK HİPOTEZ TESTLERİ
Ölçme Düzeyleri Ölçeklerin Kullanılması
AYŞE ÇAĞIL KARABUĞA A. K. Ü. Eğitim Bilimleri Y. L.
ÖLÇME VE DEĞERLENDİRME DERSİ
Olasılık Dağılımları ♦ Gazın her molekülü kendi hızına ve konumuna sahiptir. ♦ Bir molekülün belli bir hıza sahip olma olasılığı hız dağılım fonksiyonu.
BİLİMSEL ARAŞTIRMA YÖNTEMLERİ
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.

Yrd.Doç.Dr. Ali Murat SÜNBÜL Selçuk Üniversitesi, Egt.Fak.
Deneysel Yöntem İstatistiksel Yöntemler
OLASILIK ve OLASILIK DAĞILIMLARI
ÖNEMLİLİK TESTLERİ Dr.A.Tevfik SÜNTER
Temel İstatistik Terimler
EĞİTİMDE ÖLÇME VE DEĞERLENDİRME
THY ANALİZLERİ Ki – Kare Testi
SÜREKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK YOĞUNLUK FONKSİYONLARI
İki Ortalama Farkının Test Edilmesi
VERİ İŞLEME VERİ İŞLEME-4.
14.ULUSAL TURİZM KONGRESİ 2013 YILI BİLDİRİLERİ ÜZERİNE BİR DEĞERLENDİRME Prof. Dr. A. Celil ÇAKICI Mersin Üniversitesi Turizm Fakültesi.
THY Uygulaması Araştırması
21 - ÖLÇME SONUÇLARI ÜZERİNE İSTATİSTİKSEL İŞLEMLER
BİLİMSEL ARAŞTIRMA YÖNTEMLERİ
Meta Analizinde Son Gelişmeler
Örneklem Dağılışları.
ARAŞTIRMA TÜRLERİ.
İNCELEME Bilimin İşlevleri İstatistiksel Yöntemler Değişken Türleri
Örneklem Dağılışları ve Standart Hata
İSTANBUL GELİŞİM ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME DOKTORA PROGRAMI ÇAĞDAŞ YÖNETİM YAKLAŞIMLARI VE TEORİLERİ SOSYAL BİLİMLERDE NİTEL NİCEL.
Grup 101 Berat Duman Salih Yartunç.   Bu çalışmanın temel amacı Melikşah Üniversitesi öğrencilerinin sosyal kaygı düzeyleri, kaygı duyarlılıkları ve.
12.HAFTA İÇERİK VARYANS ANALİZİ Giriş Tek Faktörlü Varyans Analizi
Maliye’de SPSS Uygulamaları
Ölçeklerde Aranan Özellikler a) Geçerlik b) Güvenirlik c) Kullanışlılık Bu özelliklerden en önemlisi geçerlik, sonra güvenirlik, sonuncusu ise kullanışlılıktır.
Maliye’de SPSS Uygulamaları
Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis.
Korelasyon testleri Pearson korelasyon testi Spearman korelasyon testi Regresyon analizi Basit doğrusal regresyon Çoklu doğrusal regresyon BBY252 Araştırma.
Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis.
İKİ DEĞİŞKEN ARASINDAKİ İLİŞKİ VE İLİŞKİNİN ÖLÇÜLMESİ
İstatistiksel Analizler
UYGULAMALI BİLİMLER FAKÜLTESİ PAZARLAMA BÖLÜMÜ
GÜNEŞTEN KORUNMA DAVRANIŞ ÖLÇEĞİNİN TÜRK ADÖLESAN TOPLUMUNDA GEÇERLİLİK VE GÜVENİRLİLİĞİ Özcan Aygün1, Ayşe Ergün2 1 Sakarya İl Sağlık Müdürlüğü, Adapazarı-SAKARYA.
Prof. Dr. Hamit Acemoğlu Tıp Eğitimi Anabilim Dalı
Prof. Dr Hamit ACEMOĞLU Tıp Eğitimi AD
ANLAM ÇIKARTICI (KESTİRİMSEL) İSTATİSTİK
SPSS Uygulamaları Parametrik İstatistik
PSİKOLOJİK TESTLER.
Zeka Testleri.
ÖDE5024 DAVRANIŞ BİLİMLERİNDE İSTATİSTİK Yüksek Lisans
ÖDE5024 DAVRANIŞ BİLİMLERİNDE İSTATİSTİK Yüksek Lisans
DAVRANIŞ BİLİMLERİNDE İLERİ İSTATİSTİK DOKTORA
ÖDE5024 DAVRANIŞ BİLİMLERİNDE İSTATİSTİK Yüksek Lisans
NİŞANTAŞI ÜNİVERSİTESİ
DAVRANIŞ BİLİMLERİNDE ARAŞTIRMA (YÜKSEK LİSANS)
1.Hafta Haftalık Çizelge Temel Kavramlar SPSS’ e giriş
Korelasyon testleri Pearson korelasyon testi Spearman korelasyon testi Regresyon analizi Basit doğrusal regresyon Çoklu doğrusal regresyon BBY606 Araştırma.
DAVRANIŞ BİLİMLERİNDE İLERİ İSTATİSTİK DOKTORA
Sunum transkripti:

Açımlayıcı Faktör Analizi (AFA)

İçerik Faktör analizi nedir? Varsayımlar İşlemler / Süreç Örnekler Özet

Faktör Analizi Nedir? Faktör Analizi Nedir? Amacı Geçmişi Tipleri Modelleri

Kim Geliştirdi? Charles Spearman (1904) tarafından geliştirildi. Elle hesaplamanın zorluğundan kurtulmak için geliştirildi. Bilgisayarın kullanılmaya başlanmasından sonra yaygınlaştı

Bir galaksi evren içinde bir faktör gibidir. 3/04/2017 Bir galaksi evren içinde bir faktör gibidir. Birçok değişkenin varyansı onu oluşturan kümelenmiş yapılar ve onların arasındaki korelasyonlarca açıklanabilir. 5

Faktör Analizinin Kavramsal Modeli 3/04/2017 Faktör Analizinin Kavramsal Modeli FA, ana yapıyı oluşturan kümeleri incelemek için maddeler arasındaki korelasyonları kullanır. 6

Yaygınlıkla da psikometrik araç geliştirme sürecinde kullanılmaktadır. Faktör analizi… Kendi aralarında ilişkileri olan madde kümelerini (yani faktörleri) tanımlarken; Çok değişkenli (multivariate) teknik olarak, değişkenler arasındaki ilişkileri belirlerken; Yaygınlıkla da psikometrik araç geliştirme sürecinde kullanılmaktadır.

Amaçlar Faktör analizi tekniklerinin iki ana kullanım amacı bulunmaktadır: 1. Veri azaltma (Data reduction): Değişkenlerin sayısının daha az sayıda faktöre indirgenmesi 2. Kuram Geliştirme: Değişkenlerin kendi aralarındaki ilişkileri kullanarak yapıyı (structure) tanımlamak

Amaçlar: Veri azaltma Alttaki faktörleri açıklayarak veri yapısını basitleştirir Ölçek geliştirirken * Gereksiz * Belirsizlik içeren * İlgisiz, yapı ile ilişkili olmayan maddelerin elenmesine veya tanımlanmasına yardım eder. Faktör yüklerinin görülmesini sağlar.

Amaç: Teori Geliştirme Teorik modelin içerdiği ilişkili örüntüleri test eder. Mesela saldırganlığı ölçüyorsa «kaç tane saldırganlık faktörü var?» sorusuna cevap bulur.

Faktör Analizinin İki Modeli vardır: Açımlayıcı ve Doğrulayıcı. 3/04/2017 Faktör Analizinin İki Modeli vardır: Açımlayıcı ve Doğrulayıcı. EFA = Açımlayıcı Faktör Analizi Bir veri kümesinin içerdiği ilişkili temel yapıları inceler ve özetler CFA = Doğrulayıcı Faktör Analizi Bir veri kümesinin temel yapılarını, hipotetik olarak önceden tanımlanmış yapılara uygunluğu bağlamında denetler. 11

Açımlayıcı Faktör Analizi 3/04/2017 Açımlayıcı Faktör Analizi Bu çalışma açımlayıcı faktör analizini konu edinmektedir. 12

Örnek: Kişilik kaç faktörlüdür? 3/04/2017 Örnek: Kişilik kaç faktörlüdür? Kişilik 2, 3 yoksa 5 veya 12 faktörlü müdür? Örneğin «en büyük 5’i?» Nörortisizm Dışadönüklük Tatlılık Açıklık Dürüstlük 13

Örnek: Zeka kaç bileşenlidir? 3/04/2017 Örnek: Zeka kaç bileşenlidir? Zeka farklı / bağımsız faktörlere ayrılır mı? sözel sayısal kişilerarası gibi… ...yoksa tek bir faktör müdür (G)? 14

Kavramsal model – Basit model 3/04/2017 Kavramsal model – Basit model Faktör 1 Faktör 2 Faktör 3 12 madde (ya da değişken) üç faktörde toplanıyor. Faktörler ilişkili maddelerden oluşmaktadır. 15

Örnek: Eysenck’in 3 Kişilik Faktörü 3/04/2017 Örnek: Eysenck’in 3 Kişilik Faktörü İçedönüklük/ Dışadönüklük Nörotisizm Psikotisizm konuşkan utangaç sosyal eğlenceli kaygılı karamsar rahat gergin uyumsuz bakımsız sert yalnız 12 Madde (kişiliğin üç alt boyutu ile ilişkili 4 x 3 = 12 madde) 16

Faktör analizinin Temel Sorusu: Kaç faktör / bileşen? 3/04/2017 Faktör analizinin Temel Sorusu: Kaç faktör / bileşen? Dokuz Faktör? Tek Faktör? Üç Faktör? 17

Her soru yalnızca bir faktörden yük alır 3/04/2017 Basit model Her soru yalnızca bir faktörden yük alır Soru 1 Faktör 1 Soru 2 Soru 3 Faktör 2 Soru 4 Faktör 3 Soru 5 18

Her soru birden fazla faktörden yük alır 3/04/2017 Kompleks Model Her soru birden fazla faktörden yük alır Soru 1 Faktör 1 Soru 2 Soru 3 Faktör 2 Soru 4 Faktör 3 Soru 5 19

İşlem Süreci: EFA Varsayımları Teorik Uygunluk Örneklem büyüklüğü Ölçek seviyesi Normallik Doğrusallık Uç Değerler Faktörlenebilirlik

Teorik uygunluk Literatürü tara, gözden geçir 3/04/2017 Teorik uygunluk Image sources: ClipArt (Unknown) Garbage In –> Garbage Out i.e., Put Crap (i.e., data with no logical relationship) into Factor Analysis –> Get Crap Out of Factor Analysis i.e., check your assumptions Literatürü tara, gözden geçir Teorik olarak uygun maddeleri kullan. Uymayanları ele. 21

Toplam için: N > 200 tercihen Örneklem Büyüklüğü Bazı öneriler: Min.: her değişken (madde) için 5 kişi Örnek: 20 madde varsa, en az 100 kişi İdeal: her değişken (madde) için 20 kişi Örnek: 20 madde varsa, idealde have en az 400 kişi Toplam için: N > 200 tercihen

Örneklem Büyüklüğü Comrey and Lee (1992)‘e göre: 50 = Çok düşük, 200 = Uygun, 300 = İyi 500 = Çok iyi 1000+ = Mükemmel

Örneklem Büyüklüğü

Ölçek Düzeyi Bütün değişkenler (maddeler) korelasyonel analizler için uygun olmalıdır. yani eşit aralıklı (interval) ya da eşit oranlı (ratio/metric) ölçek türünde olmalıdır.

Faktör analizi normallik varsayımları ile hareket eder. Yani sağlıklı bir analiz için değişkenlerin dağılımları normal olmalıdır.

Doğrusallık Faktör analizi değişkenler arasındaki ilişki üzerinde kuruludur. Bu nedenle, tüm değişkenler arasındaki ilişkinin doğrusal olduğu kabul edilir. Uygun yaklaşım bu noktada scatterplot gibi uygulamalarla doğrusallğın test edilmesidir.

Uç Değerler Faktör analizi uç değerlere duyarlıdır. 3/04/2017 Uç Değerler Faktör analizi uç değerlere duyarlıdır. Bu nedenle Uç değerlerin tanımlanması, kaldırılması veya düzeltilmesi gerekir. 28

Faktörlenebilirlik Maddelerin faktör analizi için uygunluğunun yani faktörlenebiliğinin olması gerekir. Bunun denetlemenin birkaç yolu bulunmaktadır. Korelasyon matriksleri .30’dan büyük mü? Anti-image matriksleri > .50’dan büyük mü? Örneklem uygunluğu testleri (MSAs)? Bartlett’s testi anlamlı mı? KMO değeri .50 veya .60’ın üzerinde mi?

Faktörlenebilirlik (Korelasyon Matriksi) Korelasyonlar .30’un üzerinde mi? Öyleyse faktör analizine devam… Tüm maddeler oldukça iyi görünüyor…

Faktörlenebilirlik: Anti-image Korelasyon matriksi 3/04/2017 Faktörlenebilirlik: Anti-image Korelasyon matriksi Anti-image korelasyon matriksi tablosunda madde eleminasyonu için .50 sınır değer olarak kabul edilir. Düşük değerler, maddenin diğer maddelerle yeterli korelasyonunun olmadığını gösterir. 31

Anti-Image Korelasyon Matriksi Değerler her maddenin diğer maddelerle korelasyonunun yeteri kadar iyi olduğunu (>,50) gösteriyor. Bu faktörlenebilirliğin göstergesidir.

Bartlett’s küresellik testi anlamlı olmalıdır ve/veya 3/04/2017 Faktörlenebilirlik: Örneklem Yeterliği Ölçümleri (Measures of sampling adequacy) Bütünsel tanılayıcı göstergelerdir ve şu durumlarda korelasyon matriklerinin uygunluğunu gösterir: Bartlett’s küresellik testi anlamlı olmalıdır ve/veya Kaiser-Mayer Olkin (KMO) değeri ,50, tercihen ,60’dan büyük olmalıdır. Bu yol (Bartlett’s ve KMO) en hızlı ama en az güvenilir yoldur. 33

Faktörlenebilirlik Bartlett’s ve KMO

Basamaklar / Süreç 1. Faktörlenebilirlik hipotezlerini test et 2. Analiz türünü (PCA, PAF vb.) belirle 3. Faktör sayısını belirle (Eigen değeri, Scree plot, Açıklanan toplam varyans) 4. Maddeleri seç (faktör yüklerini kontrol et, hangi maddenin hangi faktöre girdiğini incele, gerekiyorsa eleminasyona git) 5. Faktörleri tanımla ve isimlendir 6. İçsel güvenirlikleri hesapla

EFA iki ana yaklaşım içerir: Tüm varyanslarla yapılan 3/04/2017 Açımlayıcı FA’nin Türleri: Çıkarım (Extraction) Yöntemi: Principals Components ve vs. Principal Axis Factoring EFA iki ana yaklaşım içerir: Tüm varyanslarla yapılan Temel Bileşenler Analizi (Principle Components - PC) Ortak varyansla yapılan: Temel Eksen Faktör Analizi Principle Axis Factoring (PAF) 36

Temel Bileşenle Analizi (PC) 3/04/2017 Temel Bileşenle Analizi (PC) Daha yaygındır. Daha pratiktir. Diğer analizlerde kullanmak üzere puan hesaplamak ve verileri azaltmak için kullanışlıdır. Tüm maddeler için varyansların tamamı analize girer. 37

Temel Eksen Faktör Analizi (PAF) 3/04/2017 Temel Eksen Faktör Analizi (PAF) Daha az yaygındır Daha kuramsaldır. Sadece ortak (shared) varyansları kullanır (Yani özgül varyanslar dışlanır) 38

Total variance of a variable 3/04/2017 Total variance of a variable Temel Eksen Faktör Analizi (PAF) Principal Components (PC) 39

PC ve PAF Bu iki prosedürün çözümleri arasında biraz farklılık vardır. 3/04/2017 PC ve PAF Bu iki prosedürün çözümleri arasında biraz farklılık vardır. Eğer emin değilsek her iki yöntemle verilerin denetlenmesi uygun olur. 40

Ortak Yükler (Communalities) 3/04/2017 Ortak Yükler (Communalities) Her değişkenin (maddenin) bir ortak varyansı bulunmaktadır. Bu değer 0 ila 1 arasında değişir. PCA ve PAF yaklaşımlarında farklı ortak yük anlayışı tabloya yansır. 41

Ortak Yükler Yüksek Ortak Yükler (>.50): 3/04/2017 Ortak Yükler Yüksek Ortak Yükler (>.50): Çıkan faktörler, analize alınan maddelerin varyansın daha fazlasını açıklamasına neden olur. Düşük Ortak Yükler (<.50): Değerler düşükse yorumu zor daha fazla faktör çıkabileceğini kabul et ya da bu maddeyi elemeyi düşün. 42

Ortak yükler

Açıklanan Varyans İyi bir faktöryel çözümlemede en az sayıda faktörle en yüksek varyansın açıklanması beklenir. Gerçekçi olmak gerekirse, toplam varyansın %50-75’ini açıklayan bir analiz mutluluk vericidir 

Açıklanan Toplam Varyans 3 faktör toplam varyansın %74.8’ünü açıklıyor – çok iyi !

Eigen Değeri (Özdeğer) (Korelasyonların kareleri toplamı) Her faktörün bir eigen değeri vardır. Eigen değeri her faktörün açıklama gücünü gösterir Ardışık olarak sıralanan faktörler için eigen değeri giderek düşer. Genel olarak: Kaiser kriterlerine göre 1’in üzerindeki eigen değerleri «kararlı» kabul edilir. Eigen değeri yüzde (%) olarak da ifade edilebilir. Tüm eigen değerlerin toplamı madde sayısını verir.

Eigen Değeri (Özdeğer) Bir analizde tüm faktörler kullanılmaz. Eigen değerleri (eigenvalues) büyük olan faktörler kullanılmalıdır. (Eigenvalue kabaca iki değişken arasındaki korelasyonu gösterir. Korelasyon varsa dış sınırlar elipse benzer.) x y x y

Açıklanan Varyans Eigen değeri .21 ile 9.55 arasında değişiyor. Üç faktörün eigen değeri 1’in üzerinde.

Scree plot Eigen değerinin grafik gösterimidir. Her faktörün açıkladığı varyans miktarını gösterir. Kırılma noktaları arasındaki değişim dikkate alınır. İlk faktör en yüksek varyansı açıklar. En son faktör en düşük varyansı açıklar.

Scree plot 2 veya 3 faktör

Scree plot: Örnek 2 Scree plot 3/04/2017 Scree plot 8 Faktör 51

Scree plot Scree plot: Örnek 3 3/04/2017 4, 6 veya14 Faktör 52

Faktör Sayısı (Neye Bağlıdır?) 3/04/2017 Faktör Sayısı (Neye Bağlıdır?) Öznel bir durum... En düşük faktör sayısı ile en yüksek varyansı açıklamaya çalış… Şunları hesaba kat: Kurama – Tahmin edilen veya beklenen faktör sayısına. Eigen değerinin kaç alındığına. Scree Plot – Kırılmanın nere/lerde olduğuna. Faktörlerin yorumlanabilirliğine. Farklı yöntemlerin duyarlılığına (PC veya PAF) Faktörler anlamlı ve yorumlanabilir olmasına… 53

Döndürülmemiş Faktör Yapısı Faktör Yükleri. Her maddenin her faktör içindeki göreceli önemini gösterir. İlk faktördeki maddeler daha fazla yük alma eğilimindedir.

Döndürülmemiş Faktör Yapısı Faktörler Bir matriks olarak tablolaştırılır. Matrikste maddeler satırlarda faktörler de sütunlarda gösterilir.

Döndürülmemiş Faktör Yapısı Birinci Faktör: Değişkenler/ maddeler ile mümkün olan en iyi bağlantıyı kurar. Toplam varyanstan aslan payını alır. Tek bir faktör, bütün veri setinde varyansın en iyi özetleyicisidir.

Döndürülmemiş Faktör Yapısı Takip eden her faktör açıklamayan varyansın en fazlasını açıklamaya çalışır. İkinci faktör ve sırasıyla diğerleri kendi öz değerini maksimize etmeye çalışır.

3

Döndürülmemiş Faktör Yapısı Döndürülmemiş bir faktör yapısını inceleyelim. Birçok madde iki veya daha çok faktörden yük alır. Bazı maddeler hiçbir faktörden yüksek yük almaz. Faktör yükleri döndürülmeden yorumlanması da zordur. Faktör yükleri matriksinin döndürülmesi daha yorumlanabilir bir faktör yapısının bulunmasına yardım eder.

Faktör Döndürmenin iki Temel Türü Orthogonal / Dik (SPSS Varimax) Oblique / Eğik (SPSS Oblimin)

İki Temel Faktör Döndürmesi Orthogonal / Dik Döndürme Faktör kovaryanslarını minimize eder, ilişkisiz olan faktörler üretir. Oblimin / Eğik Döndürme değişken faktörler üretir ve faktörler arasında korelasyon sağlar.

Döndürmenin Mantığı

Orthogonal Döndürme

İlgisiz (orthogonal) rotasyon Eğik (oblique) rotasyon Faktör 1 Faktör 2  İlgisiz (orthogonal) rotasyon Eğik (oblique) rotasyon

Faktör yükleri matriksi neden döndürülür? Döndürmeden sonra maddeler açıklanan varyans itibarıyla daha optimal duruma gelirler. Buna bağlı olarak faktörler daha yorumlanabilir duruma gelir.

Orthogonal mı? Oblique mi? Bunun için önce faktör analizini niçin yaptığınızı düşünün. Şüpheli iseniz her ikisini de deneyin. Faktörlerin yorumlanabilirliğini göz önünde bulundurun.

Döndürülmüş Matriksler XXXXX Alt Boyutu YYYYYY Alt Boyutu ZZZZZZ Alt Boyutu

Yorumlanabilirlik Sadece faktör yükleri ile hareket etmek risklidir– Dikkatli düşünün- teoriye göre hareket etmeyi ihmal etmeyiniz. Bir faktör çıktığında onun yorumlanabilir olup olmadığına bakınız.

Yorumlanabilirlik Sadece görmek istediğimize odaklanmamak gerekir; daha iyi bir açıklama olabilir. Güzel bir sonuçtan daha güzel olan sonuçlar da olabilir. 2 faktörlü model 5 faktörlü model 16 faktörlü model

Faktör yükleri ve madde seçimi Bir faktörün yapısı aşağıdaki koşullarda daha yorumlanabilirdir: 1.Her madde sadece bir faktörden güçlü yük alırsa (> +.40) 2. Her faktör % 3 veya daha yüksek yük alıyorsa; (daha fazla yük = daha yüksek güvenirlik). (Maddelerin tamamının yüksek yük alması gerekmez; ortalama yük de alabilirler.)

Her Faktörde Kaç Madde Olmalı? 3/04/2017 Her Faktörde Kaç Madde Olmalı? Kabul edilebilir en az (kerhen) = 2 Önerilen en az = 3 En Fazla = Limiti yok Daha fazla madde: → ↑ Güvenirlik → ↑ Açıklayabilirlik Tipik olarak = 4 -10 arası makuldür. 71

Madde Ne zaman elenmeli? 3/04/2017 Madde Ne zaman elenmeli? Maddenin faktör yükü düşükse (min. = .40 [değişebiliyor]) Başka bir faktörden güçlü yük alıyorsa (> .30) Not: Eleyeceksen bir defada sadece bir madde ele 72

Faktör Yükleri ve Madde Seçimi Comrey & Lee (1992)‘ye göre: Yük > .70 – Mükemmel > .63 – Çok iyi > .55 – İyi > .45 – İdare eder > .32 – Düşük

Diğer Hususlar: Madde puanlarının dağılımının normalliği Maddelerin betimsel değerlerinin kontrol edilmesi . Normale daha yakın dağılım daha sağlıklı faktör yapısı sunar.