1. Bernoulli Dağılımı Bernoulli dağılımı rassal bir deneyin sadece iyi- kötü, olumlu-olumsuz, başarılı-başarısız, kusurlu-kusursuz gibi sadece iki sonucu.

Slides:



Advertisements
Benzer bir sunumlar
3. Hipergeometrik Dağılım
Advertisements

OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
İŞLE 524 – İŞLE 531 Yönetim Muhasebesi
% A10 B20 C30 D25 E15 Toplam100.  Aynı grafik türü (Column-Sütun) iki farklı veri grubu için de kullanılabilir. 1. Sınıflar2. Sınıflar A1015 B20 C3015.
Girişimcilik Öğr.Gör.Seda AKIN GÜRDAL. Ders Akışı İşletmenin Amaçları İşletme Çevre İlişkisi.
Merkezi Eğilim Ölçüleri (Ortalamalar)
HİPOTEZ TESTLERİNE GİRİŞ 1. Şu ana kadar örneklemden elde edilmiş istatistiklerden yararlanarak, kitle parametresini kestirebilmek için nokta tahmini.
MED 167 Making Sense of Numbers Değişkenlik Ölçüleri.
TEMEL İŞLEVLERİNE GÖRE REHBERLİK
OLASILIK TEOREMLERİ Permütasyon
DİRENÇ. Cisimlerin elektrik akımını geçirirken gösterdiği zorluğa direnç denir. Birimi ohm olup kısaca R ile gösterilir. Devredeki her elemanın direnci.
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
Hatırlatma: Olasılık Tanım (Şartlı olasılık): A olayı olduğunda B olayının olma olasılığı Bir örnek: çalışan işsiz Toplam Erkek Kadın
HİPOTEZ TESTLERİNE GİRİŞ Şu ana kadar örneklemden elde edilmiş istatistiklerden yararlanarak, kitle parametresini kestirebilmek için nokta tahmini.
ÖZEL TANIMLI FONKSİYONLAR
OLASILIK ve İSTATİSTİK
Öğr. Gör. Dr. İnanç GÜNEY Adana MYO
KONULAR BÖLÜM: Kesirler, Ondalık Kesirler, Yüzde
Istatistik I Fırat Emir.
Ölçme Değerlendirmede İstatistiksel İşlemler
3. Hipergeometrik Dağılım
HİPOTEZ TESTLERİ VE Kİ-KARE ANALİZİ
Yrd.Doç.Dr.İstem Köymen KESER
ISTATİSTİK I FIRAT EMİR DERS II.
Eğitimde ve Psikolojide ÖLÇME VE DEĞERLENDİRME
OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır.
DERS2 Prof.Dr. Serpil CULA
T- Testİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ
Basit ve Kısmi Korelasyon Dr. Emine Cabı
DENEYSEL TERTİPLER VE PAZAR DENEMESİ
Yrd.Doç.Dr.İstem Köymen KESER
ÖRNEKLEME.
Kİ-KARE DAĞILIMI VE TESTİ
İSTATİSTİK II Hipotez Testleri - 2.
Yapay Sinir Ağı Modeli (öğretmenli öğrenme) Çok Katmanlı Algılayıcı
Kesikli Olasılık Dağılımları
Ünite 9: Korelasyon Öğr. Elemanı: Dr. M. Cumhur AKBULUT.
Ünite 8: Olasılığa Giriş ve Temel Olasılık Hesaplamaları
Kütle ortalamasının (µ) testi
MAT – 101 Temel Matematik Mustafa Sezer PEHLİVAN *
TANIMLAYICI İSTATİSTİKLER
Mutlak Dağılım Ölçüleri Nispi Dağılım Ölçüleri
-MOMENT -KÜTLE VE AĞIRLIK MERKEZİ
İŞ SAĞLIĞI VE GÜVENLİĞİ KARŞILAŞTIRMA ÖLÇÜTLERİ
DEĞİŞKENLİK ÖLÇÜLERİ.
İSTATİSTİK Yrd. Doç. Dr. Cumhur TÜRK
PARAMETRİK HİPOTEZ TESTLERİ
BENZETİM Prof.Dr.Berna Dengiz 13. Ders Çıktı Analizi
Okul Öncesi Dönemde Fen Eğitimi
Benzetim 11. Ders İmalat Yönetimde Benzetim.
NİŞANTAŞI ÜNİVERSİTESİ
ANALİTİK KİMYA DERS NOTLARI
B- Yaygınlık Ölçüleri Standart Sapma ve Varyans Değişim Katsayısı
Şartlı Olasılık Bir olayın olasılığından söz edebilmek için bir alt kümeyle temsil edilen bu olayın içinde bulunduğu örnek uzayının belirtilmesi şarttır.
Yrd.Doç.Dr.İstem Köymen KESER
İletişim Fakültesi Bilişim A.B.D.
NİŞANTAŞI ÜNİVERSİTESİ
Ölçme Sonuçları Üzerinde Test ve Madde İstatistiklerini Hesaplama
NİŞANTAŞI ÜNİVERSİTESİ
OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık.
Veri ve Türleri Araştırma amacına uygun gözlenen ve kaydedilen değişken ya da değişkenlere veri denir. Olgusal Veriler Yargısal Veriler.
Ölçmede Hata Kavramı ve Hata Türleri
Limit L i M i T 1981 yılından günümüze, bu konuyla ilgili 17 soru soruldu. Bu konu, türev ve integral konusunun temelini oluşturur. matcezir.
OLASILIK Uygulamada karşılaşılan olayların birçoğu kesin olmayan diğer bir ifadeyle belirsizlik içeren bir yapıya sahiptir. Olasılık kavramı kesin olmayan.
RASTGELE DEĞİŞKENLER Herhangi bir özellik bakımından birimlerin almış oldukları farklı değerlere değişken denir. Rastgele değişken ise tanım aralığında.
Olasılık Bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma veya gözlenme oranıdır Olasılık, denemelerin olası sonuçları ile ilgilenir.
Bilimsel araştırma türleri (Deneysel Desenler)
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
Sunum transkripti:

1. Bernoulli Dağılımı Bernoulli dağılımı rassal bir deneyin sadece iyi- kötü, olumlu-olumsuz, başarılı-başarısız, kusurlu-kusursuz gibi sadece iki sonucu varsa kullanılan bir dağılımdır. Bir deneyin sadece iki sonucu varsa bu deneye Bernoulli deneyi adı verilir. Bernoulli deneyinde iki sonuç vardır. Deneyin sonuçlarından biri uygun durum olup başarı olarak ifade edilir ve x=1 olarak gösterilir. Diğer hal uygun olmayan durum olup başarısızlık olarak adlandırılır ve x=0 ile gösterilir. Deneyin başarılı sonuçlanma olasılığı p ile gösterildiğinde Bernoulli dağılımı şöyle formüle edilir. Bernoulli dağılımının tek bir parametresi p başarı olasılığıdır.

Bernoulli Dağılımının beklenen değer ve varyansı Bernoulli dağılımının beklenen değeri (aritmetik ortalaması) Bernoulli dağılımının varyansı

1. Bernoulli Dağılımı Örnek: Bir sporcunun yaptığı müsabakada kazanma olasılığı 0,8 kaybetme olasılığı ise 0,2 olarak verilmiştir. Bu sporcu için Olasılık fonksiyonunu yazınız, Sporcunun beklenen (ortalama) kazanma olasılığı ve varyansını bulunuz. Çözüm a) b)

2. Binom Dağılımı Olasılık dağılımları içersinde en yaygın kullanılan dağılımlardan biridir. Bernoulli deneylerin tekrarlanabilirliğine dayanmaktadır. Bir deney n kez tekrarlandığında belli bir olay x defa meydana geliyorsa bu olayın olasılığı BİNOM dağılımı yardımı ile bulunur. Binom dağılımı aşağıdaki varsayımlara dayanmaktadır. 1) Her deney birbirlerinin karşılıklı olarak engelleyen iki mümkün halden sadece birinde meydana gelmektedir. Mümkün hallerden biri uygun hal (x) diğeri uygun olmayan hal (n-x) olarak ifade edilir. 2) Bir uygun halin olasılığı (p) her deneyde aynıdır. Uygun olmayan halin olasılığı (q=1-p) içinde aynı durum söz konusudur.(seçim iadeli) 3) Deneyler bağımsızdır. Yani bir deneyde ister uygun ister uygun olmayan hal meydana gelsin bu durum diğer deneydeki uygun bir halin olasılığına etki etmez.

2. Binom Dağılımı Binom dağılımının olasılık fonksiyonu N deneyde uygun halin x defa meydana gelme olasılığı Binom dağılımı n (deney sayısı) ve p (uygun hal olasılığı) olmak üzere iki parametreye dayanmaktadır. Örnek: a) Bir para ile yapılan 5 atışta 2 yazı gelmesi olasılığı ne olur? b) En az 2 yazı gelmesi olasılığı ne olur?

2. Binom Dağılımı Örnek: Herhangi bir öğrencinin bir dersten geçme olasılığı 0,7 dir. Rasgele seçilen 10 öğrenciden a) 4 ünün dersini geçmesi olasılığı b) En az 3 ünün dersi geçmesi olasılığı c) En fazla 8’inin dersten geçmesi olasılığı ne olur? d) X: Başarılı öğrenci sayısı olmak üzere X in olasılıklarını P(X=x)=f(x) bularak olasılık fonksiyonunun grafiğini çiziniz. Çözüm

2. Binom Dağılımı d) Başarılı öğrenci say Olasılık 5,9E-06 1 0,000138 2 0,001447 3 0,009002 4 0,036757 5 0,102919 6 0,200121 7 0,266828 8 0,233474 9 0,121061 10 0,028248

4. Poisson Dağılımı 3. Poisson Dağılımı olduğu zaman binom dağılımı, Poisson dağılımına yaklaşır. Bir olayın meydana gelme olasılığı (p) sıfıra, dolayısıyla q=1-p ; 1’e yaklaşırsa (terside mümkün ) ve n çok büyük olursa böyle olaylara nadir meydana gelen olaylar denir. Poisson dağılımı nadir meydana gelen olayların dağılımı olarak ta bilinir. Pratik olarak eğer bir olaydaki deney sayısı en az 50 (n>50) ve np<5 oluyorsa böyle olaylar nadir olaylar olarak düşünülebilir. Poisson olasılık fonksiyonu şöyle yazılır: Dağılımın tek parametresi λ olup ortalamasıdır.

3. Poisson Dağılımı Poisson dağılımında X rassal değişkeni 0,1,2,...... gibi negatif olmayan tam sayı değerler alır, Değişkenin aldığı değerlerin olasılıkları toplamı olasılık fonksiyonu olması sebebiyle 1’e eşittir.

3. Poisson Dağılımı λ=np olup dağılımın ortalamasıdır (beklenen değeri E(X)=λ) ve dağılımın tek parametresidir. Poisson dağılımının vayansı da λ ya eşittir. Var(x)= λ Poisson dağılımı da Binom dağılımı gibi bağımsız olaylarda kullanılır. Ancak kütle sınırsız olduğu zaman olayların bağımsızlığına bakmaksızın bu dağılımı kullanmak mümkündür. Poisson dağılımı mamul muayenesinde, sigortacılıkta, matbaacılıkta,iş kazalarında, telefon santrallerinde, az rastlanır hastalıkların olasılıklarının tahmininde kullanılır.

Poisson dağılımın beklenen değeri Poisson dağılımının beklenen değeri: olasılık dağılımının toplamı olduğundan 1’eşittir.

Poisson dağılımının varyansı Bunun için önce E(X2) hesaplanır. Varyans

3. Poisson Dağılımı Örnek: Bir fabrikada iş kazalarının dağılımının Poisson’a uygunluğu tespit edilmiştir. Yıllık kişi başına düşen ortalama iş kazası 0,5 olarak bulunmuştur. Tesadüfen seçilen bir kişinin; Hiç Kaza geçirmemesi, Bir kaza geçirmesi, En az bir kaza geçirmesi olasılıklarını bulunuz? Çözüm:

Örnek: Bir fabrikada üretilen malların 0,03’ü kusurludur Örnek: Bir fabrikada üretilen malların 0,03’ü kusurludur.Muayene için 25 birimlik bir örnek çekildiğinde; 4 kusurlu mal çıkması 3 veya daha fazla kusurlu mal çıkması, En fazla 2 kusurlu mal çıkması olasılığı ne olur? Bu örnek için poisson olasılıklarını bulup grafikte gösteriniz. Çözüm:

3. Poisson Dağılımı Kusurlu sayısı Olasılık f(x) 0,4723666 1 0,3542749 0,4723666 1 0,3542749 2 0,1328531 3 0,0332133 4 0,0062275 5 0,0009341 6 0,0001168 7 1,251E-05 8 1,173E-06 9 9,774E-08 10 7,33E-09 11 4,998E-10 12 3,124E-11 13 1,802E-12 14 9,654E-14 15 4,827E-15

Poisson Dağılımı Örnek Örnek: Bir üretim hattında 100 parça seçilip test edilmesi halinde en az 1 kusurlu mamulle karşılaşma olasılığı %70 olduğu biliniyor. Bu üretim hattında beklenen kusurlu parça sayısı ve kusurlu oranını hesaplayınız. Çözüm: olur. Olay Poisson dağılımına uyum gösterir. Buna göre ifadesinin her iki tarafının logaritmaları alınırsa; olup ortalama kusurlu sayısı λ=1,2 bulunur. Buna göre; Hattın kusurlu oranı p=0,012 olur.