Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

İlişki Ölçüleri. Bu bölümde biri bağımlı ve diğeri bağımsız olan iki değişken arasındaki bir ilişki olup olmadığı ve ilişkinin yönü ve kuvveti incelenecektir.

Benzer bir sunumlar


... konulu sunumlar: "İlişki Ölçüleri. Bu bölümde biri bağımlı ve diğeri bağımsız olan iki değişken arasındaki bir ilişki olup olmadığı ve ilişkinin yönü ve kuvveti incelenecektir."— Sunum transkripti:

1 İlişki Ölçüleri

2 Bu bölümde biri bağımlı ve diğeri bağımsız olan iki değişken arasındaki bir ilişki olup olmadığı ve ilişkinin yönü ve kuvveti incelenecektir.

3 İki değişken arasındaki ilişkiler değişik yapılarda ortaya çıkabilir. Örneğin bazı ilişkiler doğrusal iken bazıları doğrusal değildir. Bağımlı ve Bağımsız Değişkenler Sürekli Olduğunda İlişki Katsayısı Daha önceki derslerde iki değişken arasındaki ilişkilerin grafikler yardımı ile nasıl incelenebileceği konusu üzerinde durulmuştu.

4 Sürekli ve kesikli iki değişken arasındaki ilişkinin yapısı konusunda bilgi edinebilmenin en iyi yolu saçılım grafiklerinden yararlanmaktır.

5 Örnek 1: Ağırlık-BKI düzeyi İlişkisi Ağırlık (x) BKI (y)

6 Hizmet edilen hasta sayısı ile birim başına yemek maliyeti ilişkisi Örnek 2:

7 İki değişkene ilişkin doğrusal ilişkilerde eğer bir değişkenin değerleri artarken diğer değişkenin değerleri de artıyorsa ya da bir değişkenin değerleri azalırken diğer değişkenin değerleri de azalıyorsa, değişkenler arasında pozitif ilişki vardır. Pozitif Zayıf İlişki Pozitif Kuvvetli İlişki Pozitif Tam İlişki

8 POZİTİF ZAYIF İLİŞKİ

9 POZİTİF KUVVETLİ İLİŞKİ

10 POZİTİF TAM İLİŞKİ

11 İki değişkene ilişkin doğrusal ilişkilerde eğer bir değişkenin değerleri artarken diğer değişkenin değerleri de azalıyorsa ya da bir değişkenin değerleri azalırken diğer değişkenin değerleri de artıyorsa, değişkenler arasında negatif ilişki vardır. Negatif Zayıf İlişki Negatif Kuvvetli İlişki Negatif Tam İlişki

12 NEGATİF ZAYIF İLİŞKİ

13 NEGATİF KUVVETLİ İLİŞKİ

14 NEGATİF TAM İLİŞKİ

15 İLİŞKİSİZLİK

16 Pearson İlişki (Korelasyon) Katsayısı (r) Ölçümle belirtilen iki değişken arasındaki doğrusal ilişkinin kuvveti (derecesi) ve yönü hakkında bilgi verir. arasında değişir. İlişki artar 0 +1 İlişki Azalır

17 r İlişkinin derecesi 0.90 to 1.00 Çok kuvvetli 0.70 to 0.89 Kuvvetli 0.50 to 0.69 Orta 0.30 to 0.49 Düşük 0.00 to 0.29 Zayıf İlişkiler aşağıdaki gibi nitelendirilebilir.

18 r’nin Hesaplanması

19 r’nin Anlamlılığı Korelasyon katsayısının (r) anlamlı olup olmadığı (sıfırdan farklı olup olmadığı) t dağılımı yardımı ile test edilebilir.

20 Karşılaştırma Hesapla bulunan t istatistiği, belirlenen yanılma düzeyinde n-2 serbestlik dereceli t tablo istatistiği ile karşılaştırılır. t Hesap >t Tablo ise iki değişken arasındaki ilişkinin sıfırdan farklı olduğu söylenir.

21 Ağırlık-BKI İlişkisi Ağırlık (x) BKI (y) Örnek 1: (devam)

22 Ağırlık-BKI İlişkisi

23

24 1,0000 0,83 1,0000 İLİŞKİ( KORELASYON) MATRİSİ AĞIRLIK BKI AĞIRLIK BKI

25 Anlamlılığın Test Edilmesi 1.Hipotezlerin Kurulması. H 0 : İki değişken arasında ilişki yoktur (  =0). H 1 : İki değişken arasında pozitif ilişki vardır (  > 0) 2. Test istatistiğinin elde edilmesi.

26 3. Yanılma düzeyi alfa=0.05 alınmıştır. 4. Karar için: Sd=n-2=15-2=13’tür. 13 serbestlik dereceli tek yönlü t tablo istatistiği 1.77 olarak bulunur. Karar: t Hesap =5.39>t Tablo =1.77 olduğu için H 0 hipotezi reddedilir ve r’nin sıfırdan büyük bir değer olduğu söylenir (p<0.05).

27 Açıklayıcılık Katsayısı (R 2 ) Açıklayıcılık (belirtme) katsayısı (R 2 ), değişkenleri bağımlı-bağımsız değişken olarak düşündüğümüzde bağımlı değişkendeki toplam değişimin yüzde kaçının bağımsız değişken tarafından açıklanabildiğini belirtir.

28 İki değişken arasında doğrusal ilişki olması durumunda, korelasyon katsayısının karesi açıklayıcılık katsayısına eşittir. R 2 =r 2 R 2 değeri 0 ile +1 arasında değişir. R 2 değerinin 1’e yaklaşması, bağımlı değişkendeki değişimin büyük bir bölümünün bağımsız değişken tarafından açıklandığını gösterir.

29 Örneğimiz için R 2 R 2 =r 2 = =0.69 Buna göre ağırlık değişkeni, beden kitle indeksindeki değişimin % 69’unu açıklamaktadır. Beden kitle indeksindeki değişimin % 31’i (1-0.69) dikkate alınmayan başka değişkenlerce açıklanmaktadır.

30 Diğer Korelasyon Katsayıları Spearman Sıra Korelasyon Katsayısı (r s ) Phi katsayısı

31 Spearman Sıra Korelasyon Katsayısı (r s ) Pearson korelasyon katsayısının parametrik olmayan karşılığıdır. Değişkenlerin biri ya da her ikisinin normal dağılmadığı durumlarda kullanılabileceği gibi doğrudan sıralı (ordinal) olarak elde edilen ya da belli bir kritere göre sıralanmış olan iki değişkenin ilişki miktarını belirlemek amacı ile de kullanılır.

32 r s ’nin hesaplanması ve anlamlılığı için t istatistiğinin bulunması ’nin hesaplanması t istatistiği

33 7-9 yaş çocuklarda günlük içtikleri süt miktarı ile serum kalsiyum düzeyleri arasındaki ilişkinin incelenmesi Örnek 3:

34 Süt miktarı (bardak) (x) Serum kalsiyum düzeyi (mg/dL) (y) Sıra Süt mik. (x) Sıra Serum kalsiyum düzeyi (y) d , ,

35 α=0.05, n=10 serbestlik dereceli tek yönlü t tablo değeri 1.81’dir. 9.69>1.81 olduğu için günlük içilen süt miktarı ile serum kalsiyum düzeyleri arasında pozitif bir ilişki vardır. H 0 : İki değişken arasında ilişki yoktur ( ρ S =0). H 1 : İki değişken arasında pozitif ilişki vardır ( ρ S >0).

36 Phi Katsayısı 4 gözlü çapraz tablolarda uygulanır. Pearson korelasyon katsayısı (r) gibi yorumlanır. Ki-kare istatistiği anlamlı ise Phi katsayısı da anlamlıdır.

37 Örnek 4: Aşağıda ilkokul çağındaki çocukların, beslenme durumlarına göre okuldaki başarı durumları verilmiştir.

38 Aynı soruda bireylerin dağılımı aşağıdaki gibi olsaydı;

39 R E G R E S Y ON Ç Ö Z Ü M L E M E S İ Dr. R. ALPAR

40 REGRESYON ÇÖZÜMLEMESİ İki değişken arasındaki korelasyon katsayısı yeterince büyükse, kolay elde edilen bir x değişkeni değeri yardımıyla elde edilmesi zor olan bir y değişkeni değeri kestirilebilir. Bu kestirim regresyon çözümlemesi yardımıyla yapılır.

41 REGRESYON a)Basit doğrusal regresyon b)Çoklu doğrusal regresyon

42 BASİT DOĞRUSAL REGRESYON Bir bağımlı bir bağımsız değişkenin olduğu doğrusal regresyon çözümlemesine basit doğrusal regresyon çözümlemesi denir.

43 Kişi noGİSS (x)SKB(y) Günlük İçilen Sigara Sayısı (GİSS)-Sistolik Kan Basıncı (SKB) İlişkisi Örnek 5:

44 y ve x gibi iki değişken arasındaki doğrusal ilişki y=b 0 +b 1 x ile verilir.

45 Değişken Adları Regresyon çözümlemesinde: x değişkeni: genellikle bağımsız değişken ya da etkileyen değişken olarak adlandırılır ve x ile gösterilir. y değişkeni: x değişkenine bağlı olarak değiştiği düşünüldüğü için bağımlı değişken, açıklanan değişken ya da etkilenen değişken gibi adlar alır.

46 b 0 ve b 1 Katsayılarının Tanımı b 0 : Regresyon doğrusunun y eksinini kestiği nokta olup kesim noktası ya da sabit olarak adlandırılır. b 1 : Regresyon katsayısıdır ve x’de bir birimlik değişme olduğunda y’de meydana gelecek ortalama değişlik miktarını verir.

47 b 0 ve b 1 ’in Bulunması

48 ÖRNEK 5:(devam) Günlük içilen sigara sayısı(x) Sistolik kan basıncı(y)

49 b 0 = b 1 = 0.277

50 DeğişkenKatsayıStandart hata tp Sabit x SONUÇLARIN SUNULMASI KATSAYILARA İLİŞKİN İSTATİSTİKLER r=0.903 R 2 = =0.815

51 DKKTSdKOFP Toplam Regresyon Artık VARYANS ANALİZİ TABLOSU

52 Regresyon Doğrusunun Çizimi * *

53 ÇOKLU DOĞRUSAL REGRESYON ÇÖZÜMLEMESİ Amaç: Kolay elde edilebilir bağımsız değişkenler yardımıyla zor elde edilen bağımlı değişken değerini kestirmek Bağımsız değişkenlerden hangisi ya da hangilerinin bağımlı değişkeni daha çok etkilediğini belirlemek

54 Çoklu Doğrusal Regresyon Modeli

55 Değişkenlerin Tanımı Bağımlı değişken sürekli ya da kesikli sayısal veri tipinde olmalıdır. Bağımsız değişkenler sürekli kesikli ya da nitelik veri tipinde olabilir. Nitelik bağımsız değişkenler olduğunda göstermelik (dummy) değişkenler oluşturulur.

56 Gözlem Sayısı Gözlem sayısı (n), bağımsız değişken sayısının en az 10 katı olmalıdır. İdeali ise, gözlem sayısının bağımsız değişken sayısının 20 katı olmasıdır. Bazı çalışmalarda sayı 40 katına kadar çıkmaktadır.

57 Uyarılar Bağımsız değişkenler arasındaki korelasyon katsayıları yüksek olmamalıdır.Yüksek ilişki çoklubağlantıya neden olur. Büyük R 2 ya da F istatistiğinin anlamlı olması modelin yeterliği ve geçerliği konusunda ayrıntılı bilgi vermez. Artıkların incelenmesi gereklidir.

58 Hipertansiyon hastası olan 120 kişiye ilişkin kan basıncını etkileyen faktörlerin incelenmesi y: Ortalama artelyel kan basıncı (mm Hg) x 1 : Yaş (yıl) x 2 : Ağırlık (kg) x 3 : Vücut Yüzeyi Alanı (m2) x 4 : Yüksek tansiyon hikayesi Süresi (yıl) x 5 : Bazal kalp atım hızı (atış/dk) x 6 : Stres ölçüsü Örnek 6:

59 Çocuğun Doğum Ağırlığı (y) Gebelik haftası (x 1 ) Annenin sigara içme durumu (x 2 ) y (gr)x1x1 x2x Örnek 7:


"İlişki Ölçüleri. Bu bölümde biri bağımlı ve diğeri bağımsız olan iki değişken arasındaki bir ilişki olup olmadığı ve ilişkinin yönü ve kuvveti incelenecektir." indir ppt

Benzer bir sunumlar


Google Reklamları