Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

R 2 Belirleme Katsayısı. R2R2R2R2  Regresyon denklemi ile belirlenen bağımlı değişkenliğin toplam değişkenliğe oranı: R 2 = ___SS___ RSS + SS RSS + SS.

Benzer bir sunumlar


... konulu sunumlar: "R 2 Belirleme Katsayısı. R2R2R2R2  Regresyon denklemi ile belirlenen bağımlı değişkenliğin toplam değişkenliğe oranı: R 2 = ___SS___ RSS + SS RSS + SS."— Sunum transkripti:

1 R 2 Belirleme Katsayısı

2 R2R2R2R2  Regresyon denklemi ile belirlenen bağımlı değişkenliğin toplam değişkenliğe oranı: R 2 = ___SS___ RSS + SS RSS + SS SS: Regresyonun Kareleri Toplamı SS: Regresyonun Kareleri Toplamı RSS: Kalanların Kareleri toplamı (RSS) y değerlerinin ortalaması Gözlemlenen y değeri Hesaplanan y değeri

3 R2R2R2R2  R 2 = 1 uydurulan eğri örneklemdeki tüm bağımlı değişken değerlerindeki farklılaşmayı açıklayabiliyor.  R 2 = 0 Regresyon denklemi verideki değişkenliği hiçbir şekilde açıklamıyor.

4 R 2 Uyarılar  Yüksek R 2 değerleri geçerli bir ilişki olduğunu göstermez. Ülkedeki gazete fiyatlarıyla, hacca giden insan sayısı arasında yüksek R 2 ’li bir ilişki bulunabilir ancak bu hacca gidenlerin gazete fiyatlarındaki değişimden dolayı olduğunu söyleyemeyiz. Bu durumda R 2 ’nin hiçbir belirleyici gücünden söz edemeyiz.

5  R2 değerleri aşağıdaki 4 veri seti için de aynıdır.  Her zaman için veriyi çizin. R 2 = ___SS___ RSS + SS RSS + SS

6 R 2 Değeri Anlamlı mı? Örneklem Büyüklüğü n %10%5% Doğrusal y = ax + b modelleri için geçerlidir. İstatistiksel Anlamlılık Seviyesi

7 Anlamlı bir R 2 modelin kullanışlı, yararlı olduğu anlamına gelmez.  İki nicelik arasındaki gayet önemsiz gerçek bir ilişki yeterince yüksek sayıda gözlem yapıldığı takdirde istatistiksel olarak anlamlı hale gelebilir. Diğer taraftan az sayıdaki veri yüzünden güçlü bir ilişki istatistiksel olarak anlamlı olmayabilir.  R 2 ’nin yüksek ve istatistiksel olarak anlamlı olması istenilen bir şeydir ancak bu durumda bile tahmin edilen değerlerin belirsizliği gene de yüksek olabilir. R 2 ’nin büyüklüğü tahmin edilen niceliklerin ne kadar doğru olduğu hakkında bir bilgi vermez.

8 R2 nin büyüklüğü x değişkeninin aralığına bağlıdır.  Bağımsız değişkenin değişim aralığı azaldıkça R 2 ’nin değeri de azalır. (Diğer herşey eşit alınıp gerçek modelin veriye uydurulduğunu varsayarak)

9  Yüksek R 2 verinin gerçekçi olmayan geniş bir x aralığında toplandığına işaret edebilir.

10 Modelle Veri Uyumunu İncelemenin Diğer Yolları  Her zaman için veriyi ve uydurulan modeli grafiksel olarak kontrol etmek  Tahmin edilen değerin standard hatasını veya güvenilirlik aralığını hesaplamak

11 Excel’de Regresyon  Araçlar/Veri Çözümleme/Regresyon

12 Otokorelasyonun Regresyona Etkisi  Vaka: Şüpheli bir laboratuar deneyi: –Öğrencilere x faktöründe 1 birim artışın y faktörünün 0.5 birim arttığını göstermek için yapılıyor (Model: y=a+0.5x). Aşağıda verilen x değerlerine karşılık öğrenciler y değerlerini ölçüyorlar. –Regresyon sonuçları y = x ve R 2 = 0.12 –Eğimin güvenilirlik aralığı elde edilmesi beklenen 0.5’i içermiyor. Ayrıca bu aralık 0’ı da kapsadığından x ve y’nin ilgili olduğundan emin bile değiliz.

13 Oto Korelasyonun Etkisi y = ax + b a = 0.12 [-0.12,0.31] 0.5 olması gereken bu değer hem 0.5’e uzak hem de aralık 0’ı kapsıyor. Deneyler rastgele sırayla yapılması gerekirken sırayla, önce x=0, sonra x=1 şeklinde yapılmış.

14 Vaka İnceleme

15

16 Otokorelasyonun Regresyona Etkisi  y = b 0 + b 1 x  y i =  + e i = b 0 + b 1 x i + e i  e i, kalanlar bağımsız mı?  Eğer e i ’nin değeri e i-1 e i-2 ile ilgili değilse bağımsızdır. Eğer ilgiliyse bunu aşağıdaki şekilde ifade edebiliriz: e i = pe i-1 +a i a i : bağımsız ve normal dağılım gösteren hata p: otokorelasyon katsayısı Eğer p = 0 ise e i bağımsız Eğer 0

17 Otokorelasyonun Regresyona Etkisi Ardarda yerine koyarak: Terimlerin derecelerini sıralayarak yazarsak:

18 a’nın varyansı: 0

19 Bu eşitliğe göre eğer pozitif oto korelasyon varsa ve farkına varılıp düzeltilmezse, hesaplanan varyans gerçek varyansın 1/ (1-p 2 ) katı olacaktır.

20

21 Otokorelasyon Testi- Otokorelasyon Testi-Durbin ve Watson testi Durbin ve Watson D istatistiği için en üst (d U )ve en alt sınır (d L ) değerlerini belirlediler. Eğer dL < D < dU ise, test sonuçsuz D> d U ise p = 0 (otokorelasyon yok) D 0 (otokorelasyon mevcut) Eğer korelasyon negatifse, bu durumda D yerine 4-D değeri hesaplanır ve karşılaştırılır. e i = y i - ˆy i y i : Ölçülen (gözlemlenen) değer ˆy i :Hesaplanan y değerleri Kalanlar içinde bir otokorelasyon olup olmadığını nasıl söyleriz?

22

23 Durbin ve Watson İstatistiğinin Kritik Değer Tablosu Durbin ve Watson İstatistiğinin Kritik Değer Tablosu:

24 Örnek Yandaki veriye lineer regresyon uygulanmıştır ve kalanlar ve kalanların kareleri toplamı tabloda verilmiştir. Regresyonun olası bir otokorelasyondan etkilendiği söylenebilir mi? n = 20

25 Örnek

26 Örnek  D = 1.08  d U =1.41  d L = < 1.20  Kalanlar pozitif korelasyon gösteriyorlar.


"R 2 Belirleme Katsayısı. R2R2R2R2  Regresyon denklemi ile belirlenen bağımlı değişkenliğin toplam değişkenliğe oranı: R 2 = ___SS___ RSS + SS RSS + SS." indir ppt

Benzer bir sunumlar


Google Reklamları