Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

1 DİJİTAL ELEKTRONİK Sayısal Devreler Sayısal Devreler Rezistör Transistör Lojik Rezistör Transistör Lojik Diyot Transistör Lojik Diyot Transistör Lojik.

Benzer bir sunumlar


... konulu sunumlar: "1 DİJİTAL ELEKTRONİK Sayısal Devreler Sayısal Devreler Rezistör Transistör Lojik Rezistör Transistör Lojik Diyot Transistör Lojik Diyot Transistör Lojik."— Sunum transkripti:

1 1 DİJİTAL ELEKTRONİK Sayısal Devreler Sayısal Devreler Rezistör Transistör Lojik Rezistör Transistör Lojik Diyot Transistör Lojik Diyot Transistör Lojik Transistör Transistör Lojik Transistör Transistör Lojik Emiter Kuplajlı Lojik Emiter Kuplajlı Lojik Mosfet Kapıları Mosfet Kapıları Analog Anahtarlar Analog Anahtarlar Multivibratörler Multivibratörler Diğer Konular Diğer Konular

2 2 DİJİTAL ELEKTRONİK Analog Devre Elemanları Triyak Güç transitörü Opamp ve OTA Tristör *

3 3 DİJİTAL ELEKTRONİK Analog Devre Nedir ? Analog devrelerde çıkış büyüklüğü; Analog devrelerde çıkış büyüklüğü;  Giriş işaretinin büyüklüğü ile,  Devredeki diğer elemanlara bağlı olarak sıfır ile maksimum bir büyüklük arasında bir değer alır. Yani çıkış sürekli olarak (Analog) artabilir veya azalabilir. Şekil 1: Analog aydınlık ayarı

4 4 Dijital Devre Nedir ? “Dijital” terimi Avrupa dillerindeki “digital” teriminin okunuşu olup Türkçe karşılığı “Sayısal”dır. Analog sistemlerde elektrik sinyalleri sürekli olarak değişir ve belli sınırlar içinde her değeri alabilirler. Sayısal sistemlerde ise elektriksel sinyaller olduğu gibi iletilmez. Bu sinyallerin yerine bunlara karşı düşen rakamlar iletilir. DİJİTAL ELEKTRONİK

5 5 Dijital Devre Nedir ? Başlangıçta elektronik devrelerin hemen hemen tamamı “analog” olarak gerçekleştiriliyordu. Fakat zaman içinde “sayısal” devreler çoğalmaya ve analog devrelerin yerini almaya başladı. Çünkü sayısal elektronik devreler: Daha güvenilirdir. benzer sistemler aynı tarzda çalışır. Sinyal kalitesi yüksektir. Gürültü ve dış etkilerden çok az etkilenir. Daha ucuzdur (Pek çok uygulamada). Kopyalama ve iletim sırasında bozulmaz. (İlk kopya ile yüzüncü kopyanın kalitesi aynıdır) Geniş çaplı tümleşik devreler (VLSI: Very Large Scale Integrated Circuits) halinde bütün sistemin tek bir kırmık (chip) olarak imalata uyundur. DİJİTAL ELEKTRONİK

6 6 Dijital Devre Nedir ? Sayısal elektronik sistemler 1950 yıllarında ilk tüplü bilgisayarın icadı ile uygulanmaya başladı. Buna karşılık ilk elektronik kol saatleri ve küçük, ucuz hesap makinelerinin piyasaya çıkması ancak 1970’li yıllarda mümkün oldu. 1970’den sonra sayısal elektronik devreler yaygınlaşmaya başladı Yaygın kullanılan dijital sistemler; CD(Compact Disc), DAT (Digital Audio Tape), VCD (Video CD), DVD (Digital Video Disc) Dijital TV kameraları, Fotoğraf makinaları, Dijital radyo ve televizyon yayınları ise çok yakında tamamen dijital hale dönüşecek gibi görünmektedir. DİJİTAL ELEKTRONİK

7 7 Dijital Devre Nedir ? Dijital devrelerde çıkış sadece iki değer alabilir. Ara değerler sözkonusu değildir. Dijital devrelerde çıkış sadece iki değer alabilir. Ara değerler sözkonusu değildir. Mesela Low bölgesi 0.8 Volt, High bölgesi de 3 Volt ile belirlenmiş olsun. Mesela Low bölgesi 0.8 Volt, High bölgesi de 3 Volt ile belirlenmiş olsun. Bu durumda 0.8 voltun altındaki bütün değerler Low seviyeyi temsil eder. 3 voltun üzerindeki bütün değerlerde High seviyeyi temsil eder. Dolayısı ile 3 volt High görüldüğü gibi, 6 voltta artık High sınırları içindedir. Çıkış değerleri şu şekilde ifade edilebilir. Çıkış değerleri şu şekilde ifade edilebilir. Açık veya kapalı Açık veya kapalı 0 veya 1 0 veya 1 Yüksek (H) veya Alçak (L) Evet veya Hayır Evet veya Hayır Doğru veya Yanlış Doğru veya Yanlış DİJİTAL ELEKTRONİK

8 8 Dijital Devre Nedir ? Bu ikili mantık sisteminde çıkışta ancak iki değerli (Binary) bilgi oluşunu bir örnek devreyle vurgulayalım. Anahtar açık lamba yanmıyor Anahtar kapalı, Lamba yanıyor Bu günkü elektronik uygulamalar da artık mekanik anahtarların yerini tüm devre tekniği ile hazırlanmış anahtarlama elemanları almıştır. DİJİTAL ELEKTRONİK

9 9 Dijital Devre Nedir ? Farkında olmadan VE - VE DEĞİL, VEYA - VEYA DEĞİL gibi mantıksal kararlar vermek zorunda kaldığımız günlük yaşantımızdan bir VE kararı örneği verelim. Dijital Elektronik dersinden geçme prosedürü : Dersi benimseyip, seviyor mu : Evet Derse devam etti mi : Evet Vize ve Final’den geçecek notları aldı mı : Evet KARAR : Evet ( Bu öğrenci dijital elektronikten geçer.) Burada kararın (Evet) olabilmesi için yukarıdaki üç koşulun her birinin (Evet) olması gerekir. Bu durum 3 girişli VE kapısı ile temsil edilir. DİJİTAL ELEKTRONİK

10 10 Lojik sistemlerde Pozitif ve Negatif lojik olmak üzere iki türlü durum mevcuttur. Pozitif lojik kullanan sistemde High seviye (1), Low seviye (0) ‘ı temsil eder. Negatif lojik kullanan sistemde High seviye (0), Low seviye (1) ‘i temsil eder. DİJİTAL ELEKTRONİK

11 11 Şekil 4: VE kapısının elektriksel eşdeğer devresi (a) (b) (c) Şekil 5: VE Kapısı a) Sembol b) doğruluk Tablosu c) Boolean ifadesi AnahtarlarLamba ABY Açık Kapalı Açık Kapalı Açık Kapalı Sönük Yanıyor GirişlerÇıkış ABY DİJİTAL ELEKTRONİK Dijital teknikte sıklıkla kullanılan elemanlar : KAPILAR VE Kapısı

12 12 VE Kapısı (a) (b) (c) Şekil 6: 3 girişli VE kapısı a) sembol b) doğruluk tablosu c)Boolean ifadesi GirişlerÇıkış ABCY DİJİTAL ELEKTRONİK

13 13 VE Kapısı 7408 entegre devresi DİJİTAL ELEKTRONİK

14 14 VE Kapısı Diyotlu VE kapısı (Pozitif Lojik) Transistörlü VE kapısı DİJİTAL ELEKTRONİK

15 15 VEYA Kapısı Şekil 10:VEYA Kapısının elektriksel eşdeğer devresi Şekil 11: VEYA Kapısı a) Sembol b) Doğruluk Tablosu c) Boolean ifadesi AnahtarlarLamba ABY Açık Kapalı Açık Kapalı Açık Kapalı Sönük Yanık GirişlerÇıkış ABY DİJİTAL ELEKTRONİK

16 16 VEYA Kapısı Şekil 12: 3 girişli VEYA kapısı GirişlerÇıkış ABCY DİJİTAL ELEKTRONİK

17 17 VEYA Kapısı Şekil 13: 7432 Entegre devresi DİJİTAL ELEKTRONİK

18 18 VEYA Kapısı Şekil 14: Diyotlu VEYA kapısıŞekil 15: Transistörlü veya kapısı DİJİTAL ELEKTRONİK

19 19 NOT Kapısı NOT kapısının bir giriş birde çıkış ucu vardır. Giriş ne ise çıkış onun tersidir. Kullanılış Amacı : Ters alma işlemlerinde İletim gecikmesi sağlamak için. Birden fazla NOT seti bağlanarak iki nokta arasında istenilen sürede iletim gecikmesi sağlanır Tampon (Buffer) olarak kullanılır. TTL entegrelerin birbirlerini sürmesinde, çıkışlara bağlanacak entegre sayısını artırabilir. DİJİTAL ELEKTRONİK

20 20 NOT Kapısı a) Sembol b) doğruluk Tablosu c)Boolean ifadesi Şekil 16: NOT kapısı Şekil 17: Transistörlü NOT kapısı GirişlerÇıkış AY DİJİTAL ELEKTRONİK

21 21 NOT Kapısı Şekil 18: 7404 Entegre devresi DİJİTAL ELEKTRONİK

22 22 VE DEĞİL Kapısı Şekil 19: VE DEĞİL Kapısı a) Sembol b) Doğruluk Tablosu c) Boolean Ifadesi Bu kapı çıkışına NOT kapısı bağlanmış VE kapısı olarak düşünülebilir. Şekil 20: VEDEĞİL Kapısı eşdeğer devresi DİJİTAL ELEKTRONİK

23 23 VE DEĞİL Kapısı Ayrıca VEDEĞİL kapısı kullanılarak NOT kapısı elde etmek mümkündür. Bunu gerçeklemek için sadece iki girişi birbirine bağlamak yeterlidir. Bu durumda her iki giriş ya 1 yada 0 olacaktır. Şekil 21: VEDEĞİL Kapısının tersleyici olarak kullanılması DİJİTAL ELEKTRONİK

24 24 VE DEĞİL Kapısı VEDEĞİL kapısı dijital devrelerin temel elemanlarından birisidir. Şimdiye kadar gördüğümüz kapılar VEDEĞİL kapısı kullanılarak elde edilebilir. Şekil 22: 7400 Entegre Devresi DİJİTAL ELEKTRONİK

25 25 VEYADEĞİL Kapısı Bu kapıyı, VEYA kapısının çıkışına bir tersleyici bağlanmış şekli olarak düşünebiliriz. Şekil 23: VEYADEĞİL Kapısı DİJİTAL ELEKTRONİK

26 26 Şekil 24: VEYADEĞİL Kapısı eşdeğer devresi Şekil 25: 7402 Entegre devresi VEYADEĞİL Kapısı DİJİTAL ELEKTRONİK

27 27 Bu kapı da girişler eşit olursa çıkış 0, eğer girişler farklı olursa çıkış 1 olur. Şekil 26: Özel VEYA Kapısı ve 7486 entegre devresi Özel VEYA Kapısı DİJİTAL ELEKTRONİK

28 28 Bu kapının girişleri eşit olduğunda çıkışı 1, girişleri farklı olduğunda ise çıkışı 0 olur. Yani XOR kapısının çıkışının terslenmiş hali olarak düşünebiliriz. Şekil 27: Özel VEYADEĞİL Kapısı Özel VEYA DEĞİL Kapısı DİJİTAL ELEKTRONİK

29 29 IC devrelerin üstünlükleri : Yüzbinlerce Diyot, transistör, direnç vs. birarada bulunabilmektedir Çok karışık cihazların hacimsel olarak küçülmesi ve basitleşmesi sağlanabilmektedir Daha hafiftir Daha az ısı oluşturur işlevini daha hızlı yapar Daha az güç harcar Maliyeti daha düşüktür Birbirlerine lehimle bağlı olmadıklarından arıza olasılığı azdır.Sakıncaları a) a) Akımın ısı etkisi, minik devre elemanlarım bozacağından, yüksek akımlı devrelerde kullanılamaz. b) b) Voltajın, birbirine çok yakın olan devre elemanları arasındaki yalıtkanı delme etkisi nedeniyle, yüksek voltajlı devrelerde kullanılamaz. c) c) Çok yer işgal etmeleri nedeniyle, entegre içinde, direnç ve kondansatör oluşturmak zordur (Zorunluluk olmadıkça, direnç ve kondansatör, entegreden uç çıkarılarak, harici olarak bağlanır). d) d) Tamir edilemez, içindeki bir eleman dahi bozulsa tüm entegre, yenisi ile değiştirilir. DİJİTAL ELEKTRONİK

30 30 Entegrelerin Pin numaralarının bulunması : Entegrelerin üst yüzeyinin bir tarafında bir çentik vardır. Bu çentik sol tarafta kalacak şekilde entegreye üstten bakılır. Bu durumda altta en soldaki pin 1 numaralı pindir. Bunun yanındaki pin 2 numaralı pin olmak üzere bu şekilde devam eder. En büyük pin numarası üst sıradaki en soldaki pine aittir. DİJİTAL ELEKTRONİK

31 31 TRANSİSTÖRÜN ANAHTAR OLARAK KULLANILMASI Tam iletimde yada tam kesimde olmasına izin verilir. Ara durumlardan mümkün olduğu kadar hızlı geçilmelidir. Bu hızlı geçiş kayıp gücünün düşük tutulması açısından da önemlidir. Baz yeterince sabit bir kumanda akımı (baz akımı) verir ya da bu akımı tamamıyla keser. R direncinin özelliği : Transistörün aşırı yüklenmemesi için kumanda akımını sınırlayacak, transistörü tam iletime (doyma) sürecek değere sahiptir. DİJİTAL ELEKTRONİK

32 32 MEKANİK ANAHTARLARIN SINIRLAMALARI Hızları sınırlıdır. Sıçrama yaparlar. İlk kapanma sırasında kontaklar kısa bir süre titreşirler. Bu durumda kısa tepki sürelerine sahip dijital develerde belirsiz darbeler meydana gelir. TRANSİSTÖR SINIRLAMALARI Ters kutuplu emiter jonksiyonu voltajı : VEB : Bu voltaj emiterden beyze kırılma voltajını aşmamalıdır. Bu değer 1V V arasında olabilir. DC akım kazancı ( h FE) : Sıcaklığın azalmasıyla h FE ‘ninde değeri değişeceğinden, devre o şekilde tasarlanmalıdır ki, beklenen en düşük sıcaklıkta bile transistör doyumda kalabilmelidir. Ters kollektör doyum akımı (I CBO ): Kollektörden beyze doğru akan ters sızıntı akımıdır. Yüksek sıcaklıklarda ihmal edilmemelidir. DİJİTAL ELEKTRONİK


"1 DİJİTAL ELEKTRONİK Sayısal Devreler Sayısal Devreler Rezistör Transistör Lojik Rezistör Transistör Lojik Diyot Transistör Lojik Diyot Transistör Lojik." indir ppt

Benzer bir sunumlar


Google Reklamları