4. ÇÖZÜNÜRLÜK 4.1. Çözünürlük çarpımı NaCl Na+ + Cl- (%100 iyonlaşma) AgCl(k) Ag+(ç) + Cl-(ç) (Dengeye kadar iyonlaşma) K = K [AgCl(k)] = [Ag+] [Cl-] Kçç = [Ag+] [Cl-] Örnek : Kalsiyum sülfatın (CaSO4) deneysel olarak bulunan çözünürlüğü 0,67 g/L' dir. Bu tuz için Kçç değerini hesaplayınız. MA = 136,2 g/mol
n = = 4,9 x 10-3 mol M = = 4,9 x 10-3 mol/L [Ca2+] = 4,9 x 10-3 M [SO42-] = 4,9 x 10-3 M Buna göre, çözünürlük çarpımı sabiti, Kçç = [Ca2+] [SO42-] = (4,9 x 10-3) (4,9 x 10-3) = 2,4 x 10-5 olarak bulunur.
Örnek : Bakır(I) iyodürün Kçç değeri 5,1 x 10-12 dir Örnek : Bakır(I) iyodürün Kçç değeri 5,1 x 10-12 dir. Bu tuzun molar çözünürlüğünü hesaplayınız (Bir litre çözeltide çözünen CuI 'ün mol sayısını bulunuz). Önce çözünürlük dengesi ve derişimdeki değişmeler belirtilir. CuI (k) Cu+(ç) + I-(ç) Denge : -s +s +s Kçç = [Cu+] [I-] olduğundan 5,1 x 10-12 = (s) (s) s = = 2,3x10-6 M [Cu+] = 2,3 x 10-6 M [I-] = 2,3 x 10-6 M olur.
Örnek : Doygun Ca3(PO4)2 çözeltisinde Ca2+ ve PO43- iyonlarının konsantrasyonunu hesaplayınız. Kçç = 2,1x10-33 Ca3(PO4)2(k) 3Ca2+(ç) + 2PO43-(ç) -s +3s +2s Kçç = [Ca2+]3 [PO43-]2 Kçç = [3s]3 [2s]2 = 108 s5 = 2,1 .10-33 s = = 1,1 x 10-7 M [Ca2+] = 3s = 3 (1,1x10-7) = 3,3 x10-7 M [PO43-]= 2s = 2 (1,1x10-7) = 2,2 x10-7 M
4.2. Çözünürlük çarpımı ve çökelti oluşumu Qiç : Herhangi bir anda çözeltide bulunan iyonların konsantrasyonları yani iyonlar çarpımı dır. Bu durumda herhangi bir çözelti için üç ihtimal söz konusudur. Qiç > Kçç aşırı doygun çözelti, çökme olur. Qiç = Kçç doygun çözelti. Qiç < Kçç doymamış çözelti, çökme olmaz.
Örnek : 25 °C de 200 mL 4 x 10-2 M AgNO3 çözeltisiyle 200 mL 2 x10-2 M NaCl çözeltisi karıştırılırsa bir çökme olur mu? (AgCl için 25°C de Kçç = 1,6 x10-10) NaCl Na+(ç) + Cl-(ç) AgNO3 Ag+(ç) + NO3-(ç) [Cl-] = 2 x10-2 M / 2 = 1 x10-2 M [Ag+] = 4 x10-2 M / 2 = 2 x10-2 M Qiç = [Cl-] [Ag+] Qiç = [Cl-] [Ag+] = (1 x10-2 ) (2 x10-2) = 2 x 10-4 2 x 10-4 > Kçç = 1,6 x 10-10 olduğundan çökme olur.
4.3. Çözünürlüğe etki eden faktörler Sıcaklık, çözücü, ortak iyon, yabancı iyon (elektrolit etkisi), H+ konsantrasyonu (asitlik-bazlık) a) Ortak iyon etkisi Örnek : Gümüş klorürün 6,5 x 10-3 M gümüş nitrat çözeltisi içindeki çözünürlüğünü (g/L) olarak hesaplayınız. Kçç = 1,6 x 10-10 AgCl = 143,5 g/mol AgNO3 Ag+(ç) + NO3-(ç) 6,5 x 10-3 6,5 x 10-3 6,5 x 10-3 AgCl(k) Ag+(ç) + Cl-(ç) -s 6,5 x 10-3+s s
Kçç = [Ag+] [Cl-] 1,6 x 10-10 = (6,5 x 10-3 + s) (s) 1,6 x 10-10 = 6,5 x 10-3 (s) s = 2,5 x 10-8 M Gümüş nitrat çözeltisindeki çözünürlük : 2,5 x 10-8 x 143,5 = 3,59 10-6 g/L Hâlbuki saf sudaki çözünürlüğü şöyledir. 1,6 x 10-10 = (s) (s) s = 1,26 x 10-5 M (Saf suda) Ortak iyon etkisi çözünürlüğü azaltır.
b) Yabancı iyon etkisi (elektrolit etkisi) Çözeltinin iyonik şiddeti : μ = ½ Σ M1 Z12 + M2 Z22 + ... Mn Zn2 ZX = X türünün yükü MX = X türünün molar konsantrasyonu İdeal olmayan çözeltilerde molarite yerine aktivitenin alınması gerekir. a = f . C a = Aktivite f = Aktivite katsayısı birimsizdir. C = Molar konsantrasyonu
Analitik konsantrasyonlarda aktivite katsayısı Debye-Hückel eşitliği ile verilmiştir. -log fi = Debye-Hückel eşitliği Birçok tek yüklü iyon için αi in değeri yaklaşık olarak 0,3 nm dir. Bu durumda 3,3. α =1 olarak alınabilir. -log fi = Debye-Hückel eşitliği Burada, Zi = i türünün yükü, μ = çözeltinin iyonik şiddeti, αi = hidratize X iyonunun nanometre cinsinden etkin çapıdır.
Elektrolit etkisinin büyüklüğü, dengede yer alan iyonların yüküne önemli derecede bağlıdır. Türler nötr ise dengedeki elektrolit derişimi fazla etkilenmemektedir.
Örnek : CaF2 ün 0,01 M MgCl2 içindeki çözünürlüğünü hesaplayınız Örnek : CaF2 ün 0,01 M MgCl2 içindeki çözünürlüğünü hesaplayınız. (Kçç = 4,0 x 10-11) Çözüm : Aktif konsantrasyonları (aktiviteleri) dikkate almadan; CaF2(k) Ca2+(ç) + 2F-(ç) Kçç = [Ca2+][F-]2 -s s 2s Kçç = (s)(2s)2 = 4,0 x 10-11 s = 2,15 x 10-4 M olarak bulunur. Aktif konsantrasyonları dikkate alınarak çözünürlük şöyledir. CaF2(k) Ca2+(ç) + 2F-(ç) -s s 2s MgCl2 Mg2+(ç) + 2Cl-(ç) -0,01 M 0,01 M 2x(0,01) M
μ = 1/2 [(M1)(Z1)2 + (M2)(Z2)2 + (M3)(Z3)2 + (M4)(Z4)2 + ………..] μ = ½ [(0,01)(+2)2 + (0,02)(-1)2] μ = 0,03 -log10fi = - log10fCa = - log10fCa = - log10fCa = 0,3526 / 1,1732 - log10fCa = 0,3006 fCa = 0,50 - log10fF = - log10fF = 0,0882 / 1,1732 - log10fF = 0,07512 fF = 0,8768 fF = 0,88
a = f . C Kçç = fCa[Ca2+] fF2[F-]2 = [Ca2+].[F-]2 CaF2(k) Ca2+(ç) + 2F-(ç) -s s 2s = s.(2s)2 = s.(2s)2 s = 2,956 x10-4 M (aktivitesiz s = 2,15 x10-4 M idi) % artış = = % 37,7 Yabancı iyonların varlığı çözünürlüğü artırır.
c) Hidrojen iyonu (asitlik) etkisi Soru : AgCN’nin çözünürlüğünü, a) Saf suda b) 0,1 M HNO3 çözeltisi içinde hesaplayınız. (Kçç(AgCN) = 7,2x10-11) (Ka(HCN) = 4,93x10-10) Çözüm : a) AgCN(k) Ag+(ç) + CN-(ç) x x Kçç= [Ag+] [CN-] = 7,2 x 10-11 (x) (x) = 7,2 x 10-11 x = 8,48 x 10-6 M
Çözüm : b) AgCN(k) Ag+(ç) + CN-(ç) Kçç = [Ag+][CN-] CN-(ç) + H+(ç) HCN(ç) [HCN] = Çözünürlük = s = [Ag+] = [CN-] + [HCN] s = [Ag+] = + s2 = [Ag+]2 = Kçç + = 7,2 x 10-11 + s= [Ag+]= 0,121 M (Suda 8,48 x 10-6 M olarak bulunmuştu)
4.4. Çöktürerek ayırma (Seçimli çöktürme) Örnek : 0,10 M AgNO3 çözeltisi [CrO42-] = 0,010 M ve [Br-] = 0,10 M olan çözeltiye yavaş yavaş ekleniyor. (Ag2CrO4 için Kçç 1,4 x 10-5, AgBr için Kçç 5,0 x10-13 ) a) AgBr(k) veya Ag2CrO4(k) hangisi önce çöker? b) Ag2CrO4 çökmeye başladığı anda çözeltide kalan [Br-] konsantrasyonu nedir? c) Br- ve CrO42- birbirinden çöktürülerek ayrılabilir mi?
Çözüm : a) Kçç değerleri mukayese edildiğinde AgBr(k) önce çöker. b) Ag2CrO4 çökmeye başladığı anda çözeltideki [Ag+] şöyle bulunur. Ag2CrO4(k) 2Ag+(ç) + CrO42-(ç) Kçç = [Ag+]2 [CrO42-] [Ag+]2 10-2 = 1,4 x 10-5 [Ag+] = 3,74 x 10-2 M Bu anda ortamdaki [Br-] konsantrasyonu ise şöyle hesaplanır. AgBr(k) Ag+(ç) + Br-(ç) Kçç = [Ag+] [Br-] = 5,0 x 10-13 [3,74 x 10-2] [Br-] = 5,0 x 10-13 [Br-] = 1,34 x 10-11 M c) Br- ve CrO42- birbirinden çöktürülerek ayrılabilir.
Elde edilen değerler bir tabloda toplanabilir, AgBr çökmeye başladığında Ag2CrO4 çökmeye başladığında Br - derişimi 0,10 M 1,34 x10-11 M Ayrılma koşulu 1/10.000 e kadar ayrılır. (yani 10-5 M olması) Sonuç Bu durumda ayrılabilir.
b