MANTIK BİLİMİNE GİRİŞ VE ÖNERMELER MANTIĞI Yılmaz KILIÇASLAN.

Slides:



Advertisements
Benzer bir sunumlar
Microsoft Access Bu program Microsoft program paketinin içerisinde yer alan; çok büyük miktarlardaki verilerin depolanabileceği veritabanı oluşturmamıza.
Advertisements

ÜNİTE I MANTIK 1. ÖNERMELER a. Mantık
ÖZGÜRLÜK VE BAĞIMSIZLIK BENİM KARAKTERİMDİR.
Doğruluğu apaçık görüldüğü için, ispatlanmadan kabul edilen ve tüm bilimlerde ortak olan genel ilkelere aksiyom adı verilir. Postülatlar da ispatlanmadan.
FONKSİYONLAR Hazırlayan:Ogün İçel.
ÖNERMELER VE MANTIK HAZIRLAYAN: AYDIN EREN KORKMAZ
MANTIK Mantığın Konusu.
ÖNERME ANALİZİ VE YÜKLEM MANTIĞI Yılmaz KILIÇASLAN.
mantIKSAL OPERATÖRLER
Hazırlayan: Hakan Bozkurt.
DİLİMİZDE İKİ TÜRLÜ “DE” VARDIR:
RASYONEL SAYILARDA İŞLEMLER
ÖNERME ANALİZİ VE YÜKLEM MANTIĞI Yılmaz KILIÇASLAN.
ÖZEL MÜZEYYEN ÇELEBİOĞLU İLKÖĞRETİM OKULU.
VURGU CÜMLEDE VURGU.
Köylü ulusun efendisidir.
MANTIKLI ETMENLER Yılmaz KILIÇASLAN. Tanımlar Mantıklı etmenler şunları yapabilirler:  dünyaya ilişkin gösterimler oluşturabilirler,  dünya ile ilgili.
CÜMLE TÜRLERİ.
MANTIKLI (BİLGİ TABANLI) ETMENLER Yılmaz KILIÇASLAN.
CÜMLE ÇEŞİTLERİ.
Yapısal Program Geliştirme – if, if-else
ÜNİTE 2: KILASİK MANTIK KONU KAVRAM ÇEŞİTLERİ.
FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ DERLEYENLER: Ahmet Can ÇAKIL Ali Murat GARİPCAN Özgür AYDIN Şahin KARA KONTROL : Prof. Dr. Asaf VAROL KONU : KAPSÜLLEME.
MANTIKSAL OPERATÖRLER
ÇİZGELERİN GÖSTERİMİ Yılmaz KILIÇASLAN. Sunu Planı Bu derste, çizgelerin bilgisayarda gösterimine ilişkin iki standart yaklaşımı inceleyeceğiz.
MANTIK BİLİMİNE GİRİŞ VE ÖNERMELER MANTIĞI Yılmaz KILIÇASLAN.
MANTIK BİLİMİNE GİRİŞ VE ÖNERMELER MANTIĞI Yılmaz KILIÇASLAN.
SEMANTİK VE DİZİMSEL ÇIKARIM
ÖNERMELER MANTIĞI VE WUMPUS DÜNYASI Yılmaz KILIÇASLAN.
MANTIK DERSİ AKIL YÜRÜTME YÖNTEMLERİ
ÇİZGELERİN GÖSTERİMİ Yılmaz KILIÇASLAN.
BAĞLAÇLAR Edatlar gibi tek başlarına anlamları olmayan cümle içinde, aynı görevli sözcükleri, söz guruplarını, cümleleri hem biçimce hem de anlamca.
FONKSİYONLAR f : A B.
EXCEL FORMÜL ÇUBUGU Hazırlayan:ali BALCI.
MANTIK BİLİMİNE GİRİŞ Yılmaz KILIÇASLAN.
‘’de’’nin Yazımı.
ÖNERMELER MANTIĞI Yılmaz KILIÇASLAN.
Bilgisayar Bilimlerinin Kuramsal Temelleri
KENAN ZİBEK.
MANTIK BİLİMİNE GİRİŞ VE ÖNERMELER MANTIĞI Yılmaz KILIÇASLAN.
MANTIK VE MANTIK PROGRAMLAMA Yılmaz KILIÇASLAN.
Bilgisayar Bilimlerinin Kuramsal Temelleri
‘’De’’nin Yazımı Türkçe Dersi Ödevi
ÖNERMELER MANTIĞI Yılmaz KILIÇASLAN. Önermeler Mantığı - Bağlaçlar Yalnızca doğruluk değerleri üzerinden fonksiyonel olarak tanımlanabilen bağlaçlar ve.
Dr. Mehmet Dikmen BİL551 – YAPAY ZEKA MANTIK Dr. Mehmet Dikmen
ÖNERME ANALİZİ VE YÜKLEM MANTIĞI Yılmaz KILIÇASLAN.
EŞ SESLİ (SESTEŞ) KELİMELER
Mantığın Temel Kavramları
ÖKLİD’İN ELEMANLAR İSİMLİ
Bilişim Teknolojileri için İşletme İstatistiği
Koşullu İfadeler. Koşullu ifadeler, koşul ve önerme cümlelerinden oluşan ifadelerdir. Koşullu ifadeler “e ğ er” sözü içerirler.
Çıkarımların Onarılması. Bazı durumlarda bir çıkarımı oluşturan öncüllerden bazıları gereksiz olabilmektedir. Bazı durumlarda ise çıkarımda bulunması.
4. UNİTE SEMBOLİK (MODERN) MANTIK
Çıkarımların Geçerlik ve Kabul Edilebilirliği Yrd. Doç. Dr. Cenk Akbıyık.
Bulanık Mantık ve Yapay Sinir Ağlarına Giriş
1. Fiziksel Büyüme ve Gelişmeyi Etkileyen Faktörler 0-2 ay (refleks tepkiler) Ay (Birinci Devri Tepkiler) Ay (İkinci Devri Tepkiler) 8.
SÖZEL MANTIK Onur HACISALİHOĞLU.
Hashing (Çırpılama).
AT AT Babam at ile odun getirdi. Ayşe topu bana at.
MANTIK VE MANTIK PROGRAMLAMA Yılmaz KILIÇASLAN. Sunu Planı Bir bilgisayım yöntemi olarak mantıksal çıkarım Prolog programlama dilinin temel yapıları Prolog.
Mustafa DİNÇ Türkçe Öğretmeni
Eleştirel Bakış Hazırlayan= Fadime Aktürk
Prolog ile Mantık Programlamaya Giriş
9.SINIF MANTIK ÖZEL ÇAKABEY OKULLARI
Mantık Sistemleri ve Mantık Programlama
KÜMELER HAZIR MISIN?.
MANTIK Doğru düşünmenin kurallarını ortaya koyan bir disiplindir. Mantık, Arapça konuşmak, söylemek, dile getirme anlamlarına gelen “nutuk” kelimesinden.
Problem Çözme ve Algoritmalar
NİŞANTAŞI ÜNİVERSİTESİ
Bilgi Yönetimi ve Matematik Önerme Mantığı
Sunum transkripti:

MANTIK BİLİMİNE GİRİŞ VE ÖNERMELER MANTIĞI Yılmaz KILIÇASLAN

Mantık Bilimi Neyle Uğraşır? Mantık, akıl yürütmenin bilimi olarak tanımlanabilir. Çıkarımlar, (argümanlar) akıl yürütmenin önemli araçlarıdır. Mantık biliminin görevi, doğru akıl yürütmenin ya da eş deyişle geçerli çıkarım oluşturmanın yasalarını tespit etmektir.

Çıkarımlar Çıkarım, içlerinden bir tanesinin sonuç ve diğerlerinin öncül (aksiyom) olduğu, bir dizi yargı cümlesinden (ya da, daha kesin bir ifadeyle, bir dizi önermeden) oluşur. Eğer öncüllerinin doğru olması halinde sonucu doğru olmak zorundaysa, bu çıkarıma geçerli bir çıkarım denir.

Çıkarım Örnekleri (1) Ali partiye gelecek veya Ayşe partiye gelecek. Ali partiye gelmeyecek. -------------------------------- Ayşe partiye gelecek. Ali bir çocuk bakıcısı bulamazsa partiye gelmeyecek. Ali çocuk bakıcısı bulamadı. Bütün uçaklar düşebilir. Bütün F-16’lar uçaktır. Bütün F-16’lar düşebilir.

Çıkarım Örnekleri (2) Ali bir öğretmendir. Ali akıllıdır. -------------------------------- Bütün öğretmenler aptal değildir. Bütün balıklar memelidir. Moby Dick bir balıktır. Moby Dick memelidir.

Geçerlilik ve Öncüllerin/Sonucun Doğruluğu Bir çıkarımın, geçerli olup olmadığını anlamak için öncüllerinin veya sonucun doğruluk değerini bilmek gerekmez (örn. Çıkarım 1). Geçerli bir çıkarımın, öncülleri veya sonucu açıkça yanlış olabilir (örn. Çıkarım 5). Geçersiz bir çıkarımın, bütün öncülleri doğru olabilir. Örnek: Bütün atlar memelidir. Bütün atlar otoburdur. ------------------------------ Bütün memeliler otoburdur.

Çıkarım Şemaları (1) Aşağıdaki bütün çıkarımlar geçerlidir: Can partiye gelecek veya Ayşe partiye gelecek. Can partiye gelmeyecek. -------------------------------- Ayşe partiye gelecek. Can derse gelecek veya Ayşe derse gelecek. Can derse gelmeyecek. Ayşe derse gelecek.

Çıkarım Şemaları (2) Eğer bütün alternatifleri denersek 1. çıkarım tipindeki çıkarımlarda yalnızca veya ve olumsuzluk takısının geçerliliği etkileyen öğeler olduğunu görürüz: Ali partiye gelecek veya Ayşe partiye gelecek. Ali partiye gelecek. -------------------------------- Ayşe partiye gelecek. Ayşe partiye gelirse Ali partiye gelecek. Ali partiye gelmeyecek.

Çıkarım Şemaları (3) 1., 7. ve 8. çıkarımlar aşağıdaki çıkarım şemasının örnekleri olarak düşünülmelidir: A veya B B değil ------------ A Geçersiz ve geçerli birer çıkarım şeması: B ise A Bütün P’ler Q’dur. A değil a P’dir. ------------ ------------ B a Q’dur.

Mantık Sabitleri ve Mantık Sistemleri Mantık sistemlerinin düzeyini belirleyen sahip oldukları mantık sabitleridir. MANTIK SABİTLERİ MANTIK SİSTEMLERİ ve, veya, ise, ancak ve ancak, değil Önermeler Mantığı her, bazı Yüklem Mantığı olasılıkla, kesinlikle Kip Mantığı -DI, -ECEK Zaman Mantığı inanmak, bilmek Epistemik Mantık Mantık sabitlerinin yorumunu değiştirmek suretiyle de yeni mantık sistemleri oluşturmak mümkündür; örneğin Sezgisel Önermeler Mantığı gibi.

Önermeler Mantığı - Bağlaçlar Yalnızca doğruluk değerleri üzerinden fonksiyonel olarak tanımlanabilen bağlaçlar ve olumsuzluk operatörü, Önermeler Mantığı için Mantık Sabiti olabilirler. Örnekler: (1) Ali kafasını duvara çarptı ve ağlıyor. (2) Ali ağlıyor çünkü kafasını duvara çarptı. (3) Ali ağlıyor. (4) Ali kafasını duvara çarptı. (5) Ali ağlıyor çünkü yağmur yağıyor. (6) Yağmur yağıyor.

Önermeler Mantığı – Doğruluk Tabloları (1) OLUMSUZLUK: φ ¬φ ----------------- 0 1 1 0 VE: φ ψ (φ  ψ) ----------------------- 0 0 0 0 1 0 1 0 0 1 1 1

Önermeler Mantığı – Doğruluk Tabloları (2) VEYA: φ ψ (φ  ψ) --------------------------- 0 0 0 0 1 1 1 0 1 1 1 1 İSE φ ψ (φ  ψ) ----------------------- 0 0 1 0 1 1 1 0 0 1 1 1

Önermeler Mantığı – Doğruluk Tabloları (3) ANCAK VE ANCAK: φ ψ (φ  ψ) --------------------------- 0 0 1 0 1 0 1 0 0 1 1 1

Önermeler Mantığı – Bir Formel Dil-L0 (1) SÖZDİZİM: A. Temel İfadeler 1. Mantık Sabitleri: ¬, , , ,  2. Önerme Değişkenleri: p, q, r, p1, q1, r1, … B. Oluşum Kuralları 1. Her önerme değişkeni L0’a ait bir formüldür. 2. Eğer φ L0’a ait bir formül ise ¬φ da öyledir. 3. Eğer φ ve ψ L0’a ait formül iseler (φ  ψ), (φ  ψ), (φ  ψ), (φ  ψ) de öyledir. 4. Başka bir şey formül olamaz.

Önermeler Mantığı – Bir Formel Dil-L0 (2) L0 için bir BNF (Backus-Naur Form) Gramer: Formül  p | q | r | p1 | q1 | r1 | … Formül  ¬ Formül | ( Formül  Formül ) | ( Formül  Formül ) | ( Formül  Formül ) | ( Formül  Formül )

Önermeler Mantığı – Bir Formel Dil-L0 (2) SEMANTİK: L0 için modelimiz bütün önerme değişkenlerine 1 yada 0 değerini atayan bir F fonksiyonudur. []F = F(), bütün  önerme sabitleri için. Eğer [φ]F = 0 ise [¬φ]F = 1’dir (ve diğer durumlarda [¬φ]F = 0’dır). Eğer [φ]F = 1 veya [ψ]F = 1 ise [φ  ψ]F = 1’dir. Eğer [φ]F = 1 ve [ψ]F = 1 ise [φ  ψ]F = 1’dir. Eğer [φ]F = 0 veya [ψ]F = 1 ise [φ  ψ]F = 1’dir. Eğer [φ]F = 1 ve [ψ]F = 1 veya [φ]F = 0 ve [ψ]F = 0 ise [φ  ψ]F = 1’dir.

Semantik Geçerlilik Eğer φ1 … φn önermelerinin her birinin doğru olduğu bütün modellerde ψ önermesi de doğruysa, φ1 … φn / ψ argümanına (semantik olarak) geçerli bir argüman denir. Bu durumda ψ, φ1 … φn önermelerinin semantik sonucudur deriz: φ1 … φn ╞ ψ p  (q  r), q  ¬r / ¬p argümanının geçerliliğni semantik olarak gösteriniz.

Wumpus için basit bir bilgi tabanı - I Önermeler mantığının semantiğini belirlediğimize göre, wumpus dünyası için bir bilgi tabanı inşa edebiliriz. İşimizi kolaylaştırmak için, yalnızca kuyularla ilgileneceğiz. Önerme değişkenlerimizi, odaların indekslerinden yararlanarak belirleyelim. Her i, j için: [i, j]’de bir kuyu varsa, Pi,j ve [i, j]’de bir esinti varsa varsa, Bi,j doğru olsun.

Wumpus için basit bir bilgi tabanı - II Bilgi tabanı (BT), aşağıdaki (Ri ile gösterdiğimiz) cümleleri içerecektir. [1,1]’de kuyu yoktur: R1: ¬P1,1 Bir kuyuya doğrudan komşu olan karelerde, etmen bir esinti hissedecektir.İlgili kareler için: R2: B1,1  (P1,2  P2,1) R3: B2,1  (P1,1  P2,2  P3,1) İlk iki kare için esinti duyumu: R4: ¬B1,1 R5: B2,1 Yani, BT = R1  R2  R3  R4  R5.

Wumpus için semantik çıkarım örnekleri Temel amacımız verilen bir ψ önermesi için BT ╞ ψ olduğuna karar vermektir. Ψ önermesinin BT’nin semantik sonucu olduğunu söyleyebilmemiz için bütün olası modelleri (yani doğruluk tablosundaki olası bütün satırları) belirleyip, bu modeller içinde TB’nin doğru olduğu her yerde Ψ önermesinin de doğru olduğunu görmemiz gerekir. Aksi halde, böyle bir semantik çıkarım yapamayız. Oluşturduğumuz BT’de yedi farklı önerme sembolü olduğu için, 128 olası modelimiz (yani 128 satırlık doğruluk tablomuz) olacaktır. P1,2 ve P2,2 önermelerini inceleyiniz.

BT için bir doğruluk tablosu

Dizimsel Çıkarım Kuralları - 1  Bağlacı İçin Ekleme Kuralı: 1. . . m1. φ m2. ψ n. φ  ψ E , m1, m2

Dizimsel Çıkarım Kuralları - 2  Bağlacı İçin Çıkarma Kuralı (i): 1. . . m. φ  ψ n. φ Ç , m

Dizimsel Çıkarım Kuralları - 3  Bağlacı İçin Çıkarma Kuralı (ii): 1. . . m. φ  ψ n. ψ Ç , m

Dizimsel Çıkarım Kuralları - 4  Bağlacı İçin Çıkarma Kuralı: 1. . . m1. φ  ψ m2. φ n. ψ Ç , m1, m2

Dizimsel Çıkarım Kuralları - 5  Bağlacı İçin Ekleme Kuralı: 1. . . m. φ Varsayım n-1. ψ n. φ  ψ E 

Dizimsel Çıkarım Kuralları - 6  Bağlacı İçin Ekleme Kuralı (i): 1. . . m. φ n. φ  ψ E  , m

Dizimsel Çıkarım Kuralları - 7  Bağlacı İçin Ekleme Kuralı (ii): 1. . . m. ψ n. φ  ψ E  , m

Dizimsel Çıkarım Kuralları - 8  Bağlacı İçin Çıkarma Kuralı: 1. . . m1. φ  ψ m2. φ  X m3. ψ  X n. X Ç , m1, m2 , m3

Dizimsel Çıkarım Kuralları - 9  Bağlacı İçin Çıkarma Kuralı: 1. . . m. φ  ψ n. (Φ  ψ)  (Φ  ψ) Ç  , m

Dizimsel Çıkarım Kuralları - 10  Bağlacı İçin Ekleme Kuralı (i): 1. . . m1. φ  ψ m2. ψ  φ n. (Φ  ψ) E  , m1, m2

Dizimsel Çıkarım Kuralları - 11  Bağlacı İçin Ekleme Kuralı (ii): 1. . . m1. φ  ψ m2. ψ  φ n. (ψ  φ) E  , m1, m2

Dizimsel Çıkarım Kuralları - 12 ¬ Operatörü İçin Çıkarma Kuralı: 1. . . m1. ¬φ m2. φ n. ┴ Ç ¬, m1, m2

Dizimsel Çıkarım Kuralları - 13 ¬ Operatörü İçin Ekleme Kuralı: 1. . . m1. φ Varsayım n-1. ┴ n. ¬φ E ¬

Alıştırmalar - 1 Aşağıdaki ifadelerin L0’a ait birer formül olup olmadığını gösteriniz. ¬(¬p  q) (p  ((p  q))) (p  (q  r)) (¬p  ¬¬p) (p  (p  q)  q)

Alıştırmalar - 2 Aşağıdaki cümleleri L0’ın ifadeleri olarak formüle ediniz. Kimse gülmedi veya alkışlamadı. Güneş parlarken yağmur yağarsa, gökkuşağı görünür. Ahmet işe arabayla veya bisiklet ve trenle gider. Annem ve babam birlikte giderlerse ben gitmeyeceğim, ama sadece babam giderse ben de gideceğim. Yardımına ihtiyacım olduğunda bana yardım etmezsen, bana ihtiyacın olduğunda da ben sana yardım etmem.

Alıştırmalar - 3 Aşağıdaki teoremleri dizimsel çıkarım ile ispatlayınız: (p  q) |-- (q  p) (p  q)  r |-- (q  p)  r |-- ((p  q)  r)  (p  (q  r)) Wumpus dünyasındaki ¬P1,2 önermesini, daha önce belirlediğimiz Bilgi Tabanından (BT) dizimsel olarak çıkarınız.