DOĞRUSAL OLMAYAN REGRESYON MODELLERİ…

Slides:



Advertisements
Benzer bir sunumlar
DOĞRUSAL OLMAYAN REGRESYON MODELLERİ
Advertisements

Kütle varyansı için hipotez testi
ZAMAN SERİLERİ -1 ÖNGÖRÜ :
DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR*
İLİŞKİLERİ İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ
İstatistik Tahmin ve Güven aralıkları
Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ
DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR
Regresyon.
EŞANLI DENKLEMLİ MODELLERİN ÇÖZÜM YÖNTEMLERİ I: MATRİSSİZ ÇÖZÜM:
EŞANLI DENKLEMLİ MODELLER. Eşanlı denklem sisteminde, Y den X e ve X den Y ye karşılıklı iki yönlü etki vardır. Y ile X arasındaki karşılıklı ilişki nedeniyle.
Prof. Dr. Hüseyin BAŞLIGİL
KOŞULLU ÖNGÖRÜMLEME.
Koentegrasyon Bir çok makro iktisadi zaman serisi stokastik ya da deterministik trend içermektedir. Bu tür serileri, durağanlığı sağlanıncaya kadar farkını.
THY ANALİZLERİ Ki – Kare Testi
GÖRÜNÜRDE İLİŞKİSİZ REGRESYON MODELLERİ
ÇOKLU REGRESYON MODELİ
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
Hatalarda Normal Dağılım
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
EŞANLI DENKLEMLİ MODELLER. Eşanlı denklem sisteminde, Y den X e ve X den Y ye karşılıklı iki yönlü etki vardır. Y ile X arasındaki karşılıklı ilişki nedeniyle.
ÇOKLU DOĞRUSAL BAĞLANTI
KRUSKAL WALLIS VARYANS ANALİZİ
Yıldız Teknik Üniversitesi Makina Müh. Bölümü
Kİ-KARE DAĞILIMI VE TESTİ
İyi Bir Modelin Özellikleri
ÇOKLU DOĞRUSAL BAĞLANTI
Otokorelasyon ut = r ut-1 + et -1 < r < +1 Yt = a + bXt + ut 
OTOKORELASYON.
Otokorelasyon Y t =  +  X t + u t  u t =  u t-1 +  t -1 <  < +1 Birinci dereceden Otokorelasyon Cov (u t,u s )  0  Birinci Dereceden Otoregressif.
OTOKORELASYON.
Tüketim Gelir
ORTAK FAKTÖR TESTİ VE DİNAMİK MODEL SPESİFİKASYONU
Sabit Terimsiz Bağlanım Modeli
Regresyon (Bağlanım) Çözümlemesi
Yrd. Doç. Dr. Hamit ACEMOĞLU
Meta Analizinde Son Gelişmeler
Yrd. Doç. Dr. Mustafa Akkol
Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
…ÇOKLU REGRESYON MODELİ…
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.
HİPOTEZ TESTLERİNE GİRİŞ
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
ÖĞRENME AMAÇLARI İki değişken arasındaki “ilişki” ile neyin kastedildiğini öğrenmek Farklı yapıdaki ilişkileri incelemek Ki-kare analizinin uygulandığı.
Parametrik Hipotez Testleri
HİPOTEZ TESTLERİNE GİRİŞ
Regresyon Analizi İki değişken arasında önemli bir ilişki bulunduğunda, değişkenlerden birisi belirli bir birim değiştiğinde, diğerinin nasıl bir değişim.
Maliye’de SPSS Uygulamaları
İSTATİSTİKTE TAHMİN ve HİPOTEZ TESTLERİ İSTATİSTİK
Bölüm 7 Coklu regresyon.
İKİ ÖRNEKLEM TESTLERİ Mann_Whitney U
 Bölüm 6: Talep Tahmini Kaynak: Yönetim Ekonomisi – Prof. Dr. İ. Özer Ertuna.
OLASILIK ve İSTATİSTİK
REGRESYON VE KORELASYON ANALİZLERİ
ANLAM ÇIKARTICI (KESTİRİMSEL) İSTATİSTİK
VARYANS VE KOVARYANS ANALİZLERİ
ÜSTEL DÜZLEŞTİRME YÖNTEMİ
Numerik Veri Tek Grup Prof. Dr. Hamit ACEMOĞLU.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Hatalarda Normal Dağılım
EŞANLI DENKLEMLİ MODELLER
Ünite 10: Regresyon Analizi
Tüketim Gelir
Tam Logaritmik Fonksiyon
DAVRANIŞ BİLİMLERİNDE İLERİ İSTATİSTİK DOKTORA
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.
Korelasyon testleri Pearson korelasyon testi Spearman korelasyon testi Regresyon analizi Basit doğrusal regresyon Çoklu doğrusal regresyon BBY606 Araştırma.
Sunum transkripti:

DOĞRUSAL OLMAYAN REGRESYON MODELLERİ… Tam Logaritmik Modeller Yarı-Logaritmik Model *Log-Doğ Model(Üstel Model) *Yarı-Logaritmik Model Doğ - Log Model Polinomial Model

…Tam Logaritmik Model… X3 X2 Y X2 b2>1 0<b2<1 Y2 b2<0 Y1 (X3 sabit tutulduğunda)

…Tam Logaritmik Model(Üslü model-log-log Modeller-Sabit Elastikiyetli Modeller)… veya

Y’nin eşiti üstteki denklemde yerine konursa

…Tam Logaritmik Model… Birden fazla bağımsız değişken olduğunda lnY =lnb1 + b2 lnX2+ b3 lnX3 + ... + bk lnXk + u lne Y* =b1 *+ b2 X2*+ b3 X3* + ... + bk Xk* + u

Y

Uygulama 4.3 (207-210)

Uygulama 4.3 (207-210)

Uygulama 4.3 (207-210)

Uygulama 4.3 (207-210) = 4.0458 = 4.9615 Sx*2 =7.3986 Sy*x* =2.6911

Uygulama 4.3 (207-210) = 0.3637 = 4.0458 - (0.3637) 4.9615 = 2.2413 [ln(9.4046) = 2.2413]

…Üretim Fonksiyonu… Y= Üretim X2=Emek ; X3=Sermaye = Emeğin Marjinal Verimliliği = Sermayenin Marjinal Verimliliği lnY = -3.4485 + 1.5255 lnX2 + 0.4858 lnX3 (t) (-1.43) (2.87) (4.82) n=15 Düz-R2= 0.8738

…Yarı-Logaritmik Model… Log-Doğ Model(Üstel Model)

…Yarı-Logaritmik Fonksiyon… Log-Doğ Model(Üstel Model) lnY = b1 +b2 X+ u = ( b2Y ) = b2 X

Artış Hızı Modeli Log-Doğ Model(Üstel Model) lnY = b1 +b2 t + u r = (Antilog b2 - 1) . 100 Y= İş hacmi(1983-1988) r = (Antilog 0.131 - 1) . 100 = (1.13997 - 1) . 100 = (0.139971) . 100 = % 14

Örnek 1969-1983 yıllarına ait GSMH verileri aşağıdadır. Buna göre büyüme hızını bulunuz. Y t logY logY*t t2 Ytahmin e obs GSMH YIL LOGGSMH LOGGSMH_YIL YILKARE YTAHMIN HATA 1969 1088.000 1.000000 6.992096 6.990414 0.001682 1970 1086.000 2.000000 6.990257 13.98051 4.000000 7.017268 -0.027012 1971 1122.000 3.000000 7.022868 21.06860 9.000000 7.044122 -0.021254 1972 1186.000 7.078342 28.31337 16.00000 7.070976 0.007365 1973 1254.000 5.000000 7.134094 35.67047 25.00000 7.097830 0.036263 1974 1246.000 6.000000 7.127694 42.76616 36.00000 7.124685 0.003009 1975 1231.000 7.000000 7.115582 49.80907 49.00000 7.151539 -0.035957 1976 1298.000 8.000000 7.168580 57.34864 64.00000 7.178393 -0.009813 1977 1370.000 7.222566 65.00309 81.00000 7.205247 0.017319 1978 1438.000 10.00000 7.271009 72.71009 100.0000 7.232101 0.038907 1979 1479.000 11.00000 7.299121 80.29034 121.0000 7.258955 0.040166 1980 1475.000 12.00000 7.296413 87.55696 144.0000 7.285809 0.010604 1981 1512.000 13.00000 7.321189 95.17545 169.0000 7.312663 0.008525 1982 1480.000 14.00000 7.299797 102.1972 196.0000 7.339518 -0.039720 1983 1535.000 15.00000 7.336286 110.0443 225.0000 7.366372 -0.030086

lnY = b1 +b2 t + u LOG(GSMH)= 6.963560+ 0.026854YIL t (461.0034) (16.16401) Prob (0.0000) (0.0000) = (Antilog b2 - 1) . 100 r = (Antilog 0.02685- 1) . 100

Ücret Modeli Log-Doğ Model(Üstel Model) Aşağıdaki ücret modeli Uygulama 9.3’den alınmıştır.(s.427) Modelde: Y:Haftalık Kazanç ($) ; X2: Tecrübe ; X3 : Eğitim Kategorisi lnY = 1.19 + 0.033 X2 + 0.074 X3

…Yarı-Logaritmik Fonksiyon… Doğ - Log Model Y = b1 +b2 lnX+ u

…Yarı-Logaritmik Fonksiyon… Doğ - Log Model Y = b1 +b2 lnX+ u

Hedonik Model Doğ - Log Model Y = b1 +b2 lnX2+ b3 lnX3 + u Fiyat = -1.749.97 + 299.97 ln(m2) - 145.09 ln(YatakOda) (t) (-6.8) (7.5) (-1.7) Prob. [0.1148] Düz-R2= 0.826 sd=11

Polinomial Fonksiyonlar Y = b1 + b2 X + b3 X2 + b4 X3 + ... + bk+1 Xk + u Kuadratik Model: Y = b1 + b2 X + b3 X2 + u = b2 + 2b3 X = 0  X0= -b2 / 2b3 Eğer b3<0 ise X0 noktası maksimumdur = 2b3 Eğer b3>0 ise X0 noktası minimumdur

Polinomial Fonksiyonlar Kuadratik Model OM= Ortalama Maliyet ; Çıktı =Üretimİndeksi GMİ= Girdi Maliyetleri İndeksi OM = 10.52 - 0.175 Çıktı + 0.0009 (Çıktı)2 + 0.02 GMİ (t) (14.3) (-9.7) (7.8) (14.45) Düz-R2=0.978 sd=16

Polinomial Fonksiyonlar Kübik Model TM= Toplam Maliyet ;Q =Üretim Miktarı

Polinomial Fonksiyonlar Kübik Model Y = b1 + b2 X + b3 X2 + b4 X3 + u TM = 141.76 + 63.47 Q - 12.96 Q2 + 0.94 Q3 s(bi) (6.37) (4.78) (0.98) (0.059) R2 =0.998 sd=6

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR* Bazen İktisat teorisinden kaynaklanan bazı sınırlamaların modelde yer alması istenebilir veya gerekebilir. Tüketim ve tasarruf eğilimlerinin toplamı, Coubb-Douglas modelinin katsayılarının toplamının ölçeğe göre sabit getiri olması için bire eşit olması gibi durumlarda doğrusal birleşimler söz konusu olabilir. Benzer şekilde bazı katsayıların birbirine eşitliği veya farklı doğrusal birleşimlerinin varlığı da arzu edilebilir. Bu tür sınırlamalara doğrusal sınırlamalar denir. * Bu konu, Selahattin GÜRİŞ,Ebru ÇAĞLAYAN,Burak GÜRİŞ EViews ile Temel Ekonometri Bölüm 6’dan alınmıştır.

Regresyon modeli, ve sınırlama, olsun. Bu durumda, olacağından,

olacak ve model ve için ve tanımlaması yapılırsa, olarak tahmin edilecektir. Katsayıların birbirine eşitliği de doğrusal sınırlamadır. Aynı modelde sınırlama olursa, modeli,

olarak incelenebilir. Burada, tanımlaması ile model, olarak tahmin edilir.

DOĞRUSAL SINIRLAMALARIN TESTİ Sınırlamalar doğrusal olduğunda test edilmeleri için t ve F testleri kullanılabilir. t TESTİ Katsayıların anlamlılığının veya belirli bir değere eşitliğinin söz konusu olduğu durumda açıklanan t testi, doğrusal sınırlamaların testi için de benzer bir şekilde kullanılır. Doğrusal sınırlama türlerinin gösterdiği farklılığa bağlı olarak t testinin uygulanması da farklılıklar gösterir. Sabit değer sınırlamasında katsayılardan birinin belirli bir değere eşit olması söz konusu olduğunda yapılacak t testi katsayıların belirli bir değere eşit olmasının testi ile aynıdır.

Regresyonun orijinden geçip geçmediği test edilmek istendiğinde ise, sabit katsayının anlamlılığın yani sıfırdan farklı olup olmadığının test edilmesi gerekecektir. Sabit değer kısıtlaması birden fazla parametre için geçerli ise, t testi her biri için ayrı ayrı uygulanacaktır. Test işlemleri sınırlandırılmamış model ile yapılacaktır. İki parametrenin birbirine eşit olması, toplamlarının veya farklarının belirli bir değere eşit olması şeklinde bir sınırlama söz konusu ise, yani veya sınırlaması veya örneğin veya sınırlaması test edilecekse hipotezler daha önce açıklandığı gibi oluşturulur. Test istatistiği ise eşitlik için, olacak ve test edildiğinden

olacaktır.Burada, olarak tahmin edilir. Toplamlar veya farklar söz konusu olduğunda test istatistiği, örneğin durumu için, ve ve

olacaktır. Diğer işlemler daha önce açıklandığı gibi yapılacaktır.

Uygulama: Türkiye’nin 1980-2000 yılları arasında elde ettiği turizm gelirlerini (TG) incelemek amacıyla Türkiye’ye gelen turist sayısı (TS) ve turizm yatırımları (TY) değişkenleri ile tam logaritmik model elde edilmiştir.Bulunan bu modelde turist sayısına ilişkin parametrenin turizm yatırımlarına ilişkin parametre ile eşit olduğunu sınayınız. LN(TG) = -3.1406+2.1888LN(TS)+1.1413LN(TY) s(bi) = (0.77) (0.523) (0.325) t = (-4.078) (4.185) (3.512) prob = [0.0000] [0.0000] [0.0000] Fhes= 461.68 R2=0.9777 prob [0.0000]

thes= 3.273 > ttab= 1.734 H0 reddedilir.Sınırlama geçerli değildir. Parametrelerin birbirine eşit olduğu söylenemez.( )

F TESTİ Doğrusal sınırlamaların testi için sınırlandırılmış ve sınırlandırılmamış modellerin tahmin edilmesi gereklidir. Bu test yapılırken sınırlama sayısı önemli değildir. Test söz konusu olan sınırlamaların geçerli olmaması halinde modellerin açıklandığı değişim miktarlarının aynı olacağı mantığına dayanmaktadır. Diğer bir ifade ile söz konusu olan sınırlamalar geçerli ise sınırlandırılmış ve sınırlandırılmamış modeller tarafından bağımlı değişkendeki değişmelerin açıklanma miktarları arasında istatistiksel olarak anlamlı bir fark olacaktır.

Test için açıklanmayan değişme, yani artıkların kareleri toplamı kullanılabilir.Sınırlandırılmış modelin artıklarının kareleri toplamı ve sınırlandırılmamış modelin artıklarının kareleri toplamı ile ifade edilirse F test istatistiği, olarak hesaplanacaktır. Burada,

ve test istatistiğinin dağılımı h ve (n- kU) serbestlik dereceli F dağılımıdır. F test istatistiği R2 değerleri ile, veya olarak da hesaplanabilir.

Kimya Sanayii dalında faaliyet gösteren 15 firmanın üretimleri (Y), emek girdileri(X 2) ve sermaye girdileri (X3) aşağıdaki gibidir. Firma Üretim(bin ton) Emek(saat) Sermaye(makine saati) 1 60 1000 300 2 120 1200 400 3 190 1430 420 4 250 1100 5 1520 510 6 360 1620 590 7 380 1800 600 8 430 1820 630 9 440 610 10 490 1750 11 500 1950 850 12 520 1960 900 13 540 1830 980 14 410 1900 15 350 1500 800

Şimdi b2 + b3 =1 sınırlamasını koymak isteyelim. (2.829909) (0.567107) (0.279795) t (-5.908387) (4.799623) (1.308917) prob (0.0001) (0.0004) (0.2151) n=15, k=3 Bu üretim fonksiyonu sınırlanmamış modeldir, zira b parametrelerine sınır konmamıştır. Şimdi b2 + b3 =1 sınırlamasını koymak isteyelim. 1. Aşama: 2. Aşama: anlamlılık seviyesi ve f1 =c=1 sınırlama, f2=n-k=15-3=12 sd. lerinde Ftab=4.75 41

göre H0 hipotezi sınırlaması b2 + b3=1’i dikkate almak için 3. Aşama: R2=0.915 Sınırlandırılmamış üretim fonksiyonunun belirlilik katsayısıdır. Sınırlandırılmış üretim fonksiyonunun belirlilik katsayısı; Bunu bulabilmek için sınırlandırılmış üretim fonksiyonunu belirleyip EKKY ile tahmin etmeliyiz, yani sınırlandırılmış EKKY’yı uygulamalıyız. Şöyleki; yukarıdaki sınırlandırılmamış orijinal üretim fonksiyonu; göre H0 hipotezi sınırlaması b2 + b3=1’i dikkate almak için alınmalıdır. Biz sonuncusunu alalım: veya

Burada Y/X2, üretim/emek oranı; X3/X2, sermaye/emek oranı olup, iktisadi yönden önemlidir. İşte b1 ve b3 ‘ün denklemden EKKY ile tahmini sınırlandırılmış EKKY adını alır. b3’ü bu yöntemle bulduktan sonra b2 =1-b3’den b2’yi bulabiliriz. Üretim fonksiyonu için yani sınırlandırılmış EKKY tahmin sonuçları şöyledir: t (-0.853186) (2.954019) 43

Şimdi formül uygulanabilir, 4. Aşama: %5 ve %10 önem düzeyinde, Fhes=72.253 > Ftab=4.75 H0 reddedilir. Yani sabit verimlilik reddedilir. Yani ilgili dönemde değeri %5 ve %10 anlamlılık seviyesinde 3.088129’un 1’den farklı olduğu kabul edilir. Buradan, istatistik testlerden anlamlılık seviyesinin tespitinin, testi gerçekleştirmeden önce yapılması gerektiği sonucu çıkmaktadır. Sınırlı EKKY tahminlerinden bulunduğuna göre olacaktır. 44

Regresyon Modelinin Fonksiyonel Biçiminin Test Edilmesi (MWD) Bir doğ-doğ regresyon modeli ile log-log regresyon modelinden hangisinin tercih edileceğine karar vermek için MWD testini kullanabiliriz. (1) (2) H0: Doğ-doğ model geçerlidir H1: Log-log model geçerlidir. 45

1. ADIM: 1 nolu model (doğ-doğ) model tahmin edilir. 2. ADIM: 2 nolu model (log-log) model tahmin edilir. 3. ADIM: 1. adımdaki değerlerinin log. 4. ADIM: 5.ADIM: 4.adımda elde edilen Z değişkeni 1 nolu modeldeki doğrusal regresyon modeline bağımsız değişken olarak eklenir . Z değişkeninin katsayı tahmini istatistiksel olarak anlamlı ise H0 reddedilir.

UYGULAMA: İzmir ilinde 1971(II)-1975(II) üçer aylık dönemlerinde on ikişer adetlik demet gül talebi incelenmiştir. Demet gül talebi Y bağımlı değişken, bir demet gülün fiyatı X2 ve ikame mal olarak da bir demet karanfilin fiyatıX3 bağımsız değişken olarak modele alınmıştır. Bu model hem doğ-doğ hem de log-log model olarak tahmin edilmiştir. Hangi model tercih edilmelidir? Doğ-doğ model: R2 = 0.776 Log-log model: R2 = 0.7292 47

Zi değişkeni ile birlikte tahmin edilen doğrusal model H0: Doğ-doğ model geçerlidir H1: Log-log model geçerlidir. ttab = tn-k = t13,a =0.05 = 2.160 thes < ttab H0 reddedilemez. 48

lnMD=0.412 - 2.325ln(i) + 1.982ln(Y) + 0.417ln(L) Bir ekonomideki bir para talebi modelinde MD=Para talebi, i=Faiz oranı, Y=Milli gelir, L=Likit aktifler stoku(Para dışındaki) değişkenleri yer almaktadır. 1960-1997 dönemi verileri ile bir ülke için şu fonksiyon tahmin edilmiştir. MD= 0.003 - 0.216(İ) + 0.52(Y) + 0.367(L) s(bi) (0.009) (0.112) (0.101) (0.102) Daha sonra bu değişkenlerle tam logaritmik model oluşturulmuştur. lnMD=0.412 - 2.325ln(i) + 1.982ln(Y) + 0.417ln(L) s(bi) (0.519) (0.102) (0.192) (1.562) 49

thes(17.159)>ttab(2.042) H0 reddedilir.Log-log model geçerlidir. Doğrusal modelin doğru model hipotezini test etmek için aşağıdaki model kurulmuştur. Gerekli hipotezleri kurup %5 önem seviyesinde hangi modelin tercih edileceğini söyleyiniz. MD= 0.01 - 0.038(i) + 0.23(Y) - 0.68(L) + 2.814(Zİ) s(bi) (0.004) (0.0026) (0.004) (0.512) (0.164) H0=Doğ-doğ model geçerlidir. H1=Log-log model geçerlidir. thes(17.159)>ttab(2.042) H0 reddedilir.Log-log model geçerlidir. 50

DOĞRUSAL OLMAYAN SINIRLAMALAR Bazı durumlarda sınırlamaların yapısı doğrusal olmaz. Bu durumda doğrusal sınırlamalardan farklı olarak modellerin tahmininde problemlerle karşılaşılır. Parametreler klasik en küçük kareler yöntemi ile tahmin edilemeyebilirler. Regresyon modelinin, olduğunu ve katsayılar ile ilgili sınırlamanın olduğunu varsayalım. Bu durumda,

olacağı model, olacaktır. Bu model doğrusal olmayan bir modeldir. Model parametreleri, en küçük kareler veya farklı bir yöntemle tahmin edilecektir.

DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ Gerçekte doğrusal olmayan modellerin sınırlamaları için kullanılacak testler, tahmincilerin dağılımı normal dağılım olmadığından farklı olacaktır. Sınırlamalar için Benzerlik Oranı testi (LR), Wald testi (W) ve Lagrange Çarpanı testi (LM) kullanılır. Bu testler sadece doğrusal olmayan sınırlamalar için geçerli olmayıp, doğrusal sınırlamalar için de geçerlidir. Ancak doğrusal sınırlamalar için açıklanan testlerin gerçekte doğrusal olmayan modeller için kullanılması söz konusu değildir.

BENZERLİK ORANI TESTİ Benzerlik oranı testi için adından da anlaşılacağı gibi benzerlik fonksiyonu kullanılır. Test için sınırlandırılmış modelin tahmini de yapılır ve logaritmik benzerlik fonksiyonunu eğiminin sıfır veya sıfırdan farklı olması durumuna göre sınırlamaların geçerli olup olmayacağına karar verilir. Sınırlandırılmış modelin logaritmik benzerlik fonksiyonunu LR, sınırlandırılmamış modelin logaritmik benzerlik fonksiyonu LU ile ifade edersek test istatistiği, olarak hesaplanır. LR test istatistiğinin dağılımı h serbestlik dereceli ki-kare dağılımıdır. h sınırlama sayısıdır. Temel hipotez sınırlamaların geçerli olduğunu,alternatif hipotez ise sınırlamaların geçerli olmadığını ifade eder.

LR test istatistiği hata payı ve h serbestlik derecesi ile ki-kare tablosundan bulunacak değer ile karşılaştırılır. LR tablo değerinden büyükse H0 hipotezi reddedilir,sınırlamalar geçersizdir. Aksi söz konusu ise sınırlamalar geçerlidir. LR test istatistiği sınırlandırılmış ve sınırlandırılmamış modellerin artıklarının karelerinin toplamı ile veya sınırlandırılmış ve sınırlandırılmamış modellerin belirlilik katsayısı ile, olarak da hesaplanabilir.

LAGRANGE ÇARPANI TESTİ Bu test Lagrange fonksiyonuna ve sınırlandırılmış modelin tahminine dayanarak yapılır. Büyük örnekler için olarak hesaplanır ve test istatistiğinin dağılımı h (sınırlama sayısı) serbestlik dereceli ki-kare dağılımıdır. LM test istatistiği R2 değerleri ile, hesaplanabilir. Doğrusal sınırlamalar söz konusu olduğunda test istatistiği,

olarak hesaplanabilir olarak hesaplanabilir. Hipotezler ve hipotezin kabul kararı benzerlik oranı testinde açıklandığı gibidir. LM testi F testi gibi bağımsız değişken katsayılarının tümünün anlamlılığını test etmek için kullanılabilir. Bu durumda test istatistiği sınırlandırılmamış modelin belirlilik katsayısı kullanılarak hesaplanır. LM test istatistiğinin dağılımı test edilen parametre sayılı (k-1) serbestlik dereceli ki-kare dağılımıdır.

WALD TESTİ Testte, sınırlandırılmamış modelden tahmin edilen varyans kullanıldığından sınırlandırılmamış modelin tahminini gerektirir. Birden fazla sınırlama test edilebilir. Sınırlama sayısı h ile ifade edilebilir. Wald test istatistiği, olarak hesaplanır. Wald test istatistiği R2 değerleri ile, hesaplanır.

Sınırlama sayısı h=1 olduğundan ki-kare tablosunda 1 serbestlik derecesi ile tablo değeri bulunarak benzerlik oranı testinde olduğu gibi karar verilir. Aynı modelde aynı kısıtlamalar için Lagrange çarpanı, Benzerlik oranı ve Wald testleri hesaplandığında, ilişkisi görülür.

Uygulama: Mayıs 2001-Mart 2010 dönemi için faiz oranları (FAİZ), enflasyon açığı (EACIK), üretim açığı (URETİMACIK), bir dönem önceki faiz oranı (GFAİZ) ve döviz kuru açığı (DKACIK) değişkenleriyle model tahmin edilmiştir. Daha sonra döviz kuru açığının yer almadığı modeli ele alarak sınırlama testlerinden F,LR,LM ve W testleri ile hangi model ile çalışılacaktır.

Yt=β1+β2GFAİZ β3DKAÇIK+β4EAÇIK+β5ÜRETİMAÇIK+ut Sınırlandırılmamış model: = 0.995498

Sınırlandırılmış model: = 0.994842

1. F TESTİ ÖRNEĞİ 1. aşama: H0: Sınırlamalar geçerlidir. ( ) H1: Sınırlamalar geçersizdir. ( ) 2. aşama: f1: h= 1 , f2: n-k= 106-5=101 Ftab=6,85 3. aşama:

4. aşama: Fhes = 14.7170 > Ftab = 6.85 H0 reddedilir. Sınırlamalar geçersizdir. Sınırlandırılmamış model ile çalışılmalıdır.

2.BENZERLİK ORANI TESTİ ÖRNEĞİ aşama: H0: Sınırlamalar geçerlidir. ( ) H1: Sınırlamalar geçersizdir. ( ) 2.aşama: h=1 3.aşama:

4.aşama: LR=14.42 > H0 reddedilir. Sınırlamalar geçersizdir. Sınırlandırılmamış model ile çalışılmalıdır. veya > H0 reddedilir. Sınırlamalar geçersizdir.

3.LAGRANGE ÇARPANI TESTİ ÖRNEĞİ 1. aşama: H0: Sınırlamalar geçerlidir. ( ) H1: Sınırlamalar geçersizdir. ( ) 2.aşama: h=1 3.aşama:

4.aşama LM=13.483 > H0 reddedilir. Sınırlamalar geçersizdir. veya > H0 reddedilir. Sınırlamalar geçersizdir. Sınırlandırılmamış model ile çalışılmalıdır.

WALD TESTİ ÖRNEĞİ 1. aşama: H0: Sınırlamalar geçerlidir. ( ) H1: Sınırlamalar geçersizdir. ( ) 2.aşama: h=1 3.aşama:

W=15.449 > H0 reddedilir. Sınırlamalar geçersizdir. veya > H0 reddedilir. Sınırlamalar geçersizdir. Sınırlandırılmamış model ile çalışılmalıdır.

LM=13.483 LR=14.42 W=15.449 LM LR W

Yt=β1+β2GFAİZ β3DKAÇIK+β4EAÇIK+β5ÜRETİMAÇIK+ut Sınırlandırılmamış model: = 0.995498

Sınırlandırılmış model: =0.994597

4.WALD TESTİ ÖRNEĞİ 1. aşama: H0: Sınırlamalar geçerlidir. ( ) H1: Sınırlamalar geçersizdir. ( ) 2.aşama: h=2 3.aşama:

W=15.449 > H0 reddedilir. Sınırlamalar geçersizdir. veya W=21.214 > H0 reddedilir. Sınırlamalar geçersizdir. Sınırlandırılmamış model ile çalışılmalıdır.