KATI CİSİMLERİN ALAN VE HACİMLERİ

Slides:



Advertisements
Benzer bir sunumlar
ÇOKGENLER.
Advertisements

YENİ MATEMATİK Cisim Atölyesi
GEOMETRİK CİSİMLER.
PRİZMATİK YÜZEYLER Düzlemsel bir çokgene dayanan ve bu çokgenin düzlemini tek noktada kesen sabit bir doğruya paralel olarak kayan bir doğrunun oluşturduğu.
GEOMETRİK CİSİMLER.
GEOMETRİK CİSİMLER S.BAYHAN.
DİK PRİZMALARIN ÖZELLİKLERİ
TEMEL DİKKLİK KAVRAMI E d k O Düzlemde G F E n m d B p Uzayda.
Kazanımlar : Geometrik Cisimler
ÇOKGENLER.
GEOMETRİK CİSİMLERDE DÖNME HAREKETİ
GEOMETRİ.
GEOMETRİK CİSİMLER.
GEOMETRİK CİSİMLER.
DİK PRİZMALARIN YÜZEY ALAN BAĞINTILARI HAZIRLAYAN:SÜMEYYE TAŞTEPE
GEOMETRİK CİSİMLER VE ÖZELLİKLERİ
CİSİMLERİN YÜZEYLERİ.
PRAMİTLER KARE DİK PRAMİT KONİ DÜZGÜN DÖRTYÜZLÜ DÜZGÜN SEKİZYÜZLÜ
GEOMETRiK CiSiMLER.
Anadolu Öğretmen Lisesi
Grup prizmatik Hazırlayanlar Sibel Güler - Fatma Akfırat Binnur Sancak Palaz - Volkan Tay Prizmatik.
DİK PRİZMALAR Tabanları birbirine eş herhangi bir çokgen ve yan
Matematik Geometrik Şekiller.
GEOMETRİK ŞEKİLLER.
PİRAMİDİN , DİK KONİNİN VE KÜRENİN ÖZELLİKLERİ, ALAN VE HACİMLERİ
GEOMETRİK CİSİMLERİN SİMETRİLERİ
GEOMETRİK CİSİMLER.
Uzayda Kapalı Yüzeyler
Uzayda Kapalı Yüzeyler
BİR DÜZLEM İLE BİR GEOMETRİK CİSMİN ARA KESİTİNİ BELİRLEME
PRİZMAYI İNŞA EDER, TEMEL ELEMANLARINI BELİRLER
KÜP 1- 8 KÖŞESİ VARDIR 2-12 AYRITI ( KENARI) VARDIR
ÜÇGEN, KARE, DİKDÖRTGEN VE ÇEMBER MODELLERİ sibelogretmen.com.
MEHMET GÖK 2/B SINIFI ÖĞRETMENİ
TEMEL DİKKLİK KAVRAMI E d k O Düzlemde G F E n m d B p Uzayda.
YENİ MATEMATİK Cisim Atölyesi
FATMA ALTAY Matematik A
DİK PİRAMİDİN HACİM BAĞINTISI
TUĞBA TAŞOLUK İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ
Çokgenler.
Pİramİtler.
DİKDÖRTGEN-KARE KONU ANLATIMI VE SORU ÇÖZÜMLERİ
PİRAMİT, KONİ VE KÜRE Bu slayt 8.sınıf düzeyindeki öğrencilere, matematik dersi ünite 4 konusu anlatımı için düzenlenmiştir.
Uzayda Kapalı Yüzeyler
BİLGİSAYAR DESTEKLİ MATEMATİK
DİK PRİZMALAR.
PRİZMALAR.
Rize Üniversitesi Eğitim Fakültesi Özge Kurtgöz
GEOMETRİK CİSİMLER ABDULLAH AYDEMİR
KATI CİSİMLERİN ALAN VE HACİMLERİ
PRİZMALAR.
GEOMETRİK CİSİMLER.
GEOMETRİK CİSİMLER.
ÖĞRETİM TEKNOLOJİLERİ VE MATERYAL TASARIMI DERSİ ÖDEVİ
Geometrik cisimler Semboller: cm2, m2 Emine çil
GEOMETRİK CİSİMLER.
DİK PRİZMALARIN ALAN ve HACİMLERİ
YÜZEY :Cisimlerin hava ile temas eden bölümlerine yüzey denir.
GEOMETRİK ŞEKİLLER KARE
DİKDÖRTGENLER PRİZMASI KARE PRİZMA VE KÜPÜN HACMİ
Uzayda Kapalı Yüzeyler
ÇOK YÜZLÜLER VE ARAKESİTLERİ: Çok yüzlüler, tüm yüzleri ve tüm ayrıtları eş olan düzgün cisimlerdir. Bu cisimlere PLATONİK CİSİMLER denir. Bütün yüzleri.
KARE DİKDÖRTGEN VE ÜÇGEN
PRİZMALAR VE PİRAMİTLER
GEOMETRİK CİSİMLER VE ÖZELLİKLERİ
5.Sınıf GEOMETRİK CİSİMLER Düzenleyen : Ömer TÖK.
Prizma Nedir? Birbirine eşit ve paralel iki düzlemin köşelerinin birleşmesi sonucu elde edilen cisme prizma denir.
İLKER ALPÇETİN FL 11-A 68.  Alt ve üst tabanları daire olan dik silindire dik dairesel silindir denir.  Silindirin altında ve üstünde oluşan kesitlere.
KATI(GEOMETR İ K) C İ S İ MLER MATEMATİK PROJE SLAYTI M.AŞKIN ERDOĞAN
Sunum transkripti:

KATI CİSİMLERİN ALAN VE HACİMLERİ

KATI CİSİMLER DİK PRİZMALAR PİRAMİT DİK KONİ KÜRE 5. SİLİNDİR

1.DİK PRİZMALAR DİK PRİZMALARIN ÖZELİKLERİ DİK PRİZMALARIN ALAN VE HACMİ DİKDÖRTGENLER PRİZMASI KÜP KARE DİK PRİZMA DİK ÜÇGEN PRİZMA

DİK PRİZMALARIN ÖZELİKLERİ Tabanları herhangi bir çokgensel bölge olan ve yan yüzleri dikdörtgensel bölgelerden meydana gelen cisimlere dik prizma denir. Prizmalar tabanlarına göre; dikdörtgenler prizması,kare dik prizma, üçgen dik prizma , yamuk dik prizma …. olarak adlandırılırlar.

Üst taban Yükseklik(h) Cisim köşegeni Yanal ayrıt Alt taban

Dik prizmaların özelikleri; 1.Tabanları eş ve paraleldir. 2.Yan yüzleri dikdörtgensel bölgelerdir. 3.Her bir köşede kesişen ayrıtları birbirine diktir. 4.Yan ayrıtları aynı zamanda yüksekliktir. 5.Tabanları düzgün çokgensel olan dik prizmalara düzgün dik prizma denir. 6. Cisim köşegeni daima prizmanın içinden geçer. Yüzeylerinden geçmez. Sadece bir yüzeyden geçen köşegene o yüze ait yüzey köşegeni denir.

DİK PRİZMALARIN ALAN VE HACMİ Dik prizmanın taban biçimi nasıl olursa olsun, yanal yüzeyi daima bir dikdörtgen olur. Yanal yüzü oluşturan dikdörtgenin alt kenarı tabanın çevresi kadardır. Diğer kenarı ise h yüksekliği kadar olur.

Yanal Alan = Taban çevresi x Yükseklik Bütün dik prizmaların yanal alanı taban çevresi ile yüksekliğin çarpımıdır. Bütün Alan ise yanal alan ile iki taban alanının toplamıdır. Tüm Alan = Yanal Alan + 2. Taban Alanı

Hacim=Taban Alanı x Yükseklik Dik prizmanın hacmi; Hacim=Taban Alanı x Yükseklik Bir daha hatırlayacak olursak: Yanal Alan =Taban çevresi x Yükseklik Tüm Alan =Yanal Alan + 2.Taban Alanı

DİKDÖRTGENLER PRİZMASI Dikdörtgenler prizması yan yüzeyleri karşılıklı ikişer ikişer eş olan altı adet dikdörtgenden oluşan prizmadır . Dikdörtgenler prizmasında birbirine en uzak iki köşeyi birleştiren doğru parçasına cisim köşegeni (e) denir.

Taban alanı= a.b Tüm alan=2.(a.b+b.c+a.c) Hacim: V=a.b.c Yüzey Köşegeni: f² = a² + b² Cisim Köşegeni: e² =a²+b²+ c²

KÜP Bütün ayrıtları birbirine eşit olan dik prizmaya küp denir. Tüm yüzeyleri karedir. Kübün yüzey köşegenleri birbirine eşittir.

Hacim = a³ Alan = 6a² Köşegen=k² =e² +a²

KARE DİK PRİZMA Tabanı kare olan prizmalara kare prizma denir. Yan yüzü dört adet eş dikdörtgenden oluşur.

Yanal Alan = 4 . a . h Alan = 4.ah + 2.a² Hacim = a² . h

DİK ÜÇGEN PRİZMA Dik üçgen prizmanın tabanı dik üçgendir. Yan yüzeyleri ise üç tane dikdörtgenden oluşur.

Taban alanı = b.c/2 Yanal alan = (a + b + c) . h Tüm Alan = b . c + (a + b + c) . H Hacim= b.c/2.h

PİRAMİT Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir.

Taban kare ise, kare piramit; taban altıgense altıgen piramit gibi Taban kare ise, kare piramit; taban altıgense altıgen piramit gibi. Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Kare Piramit

Kare piramidin tabanı kare biçimindedir Kare piramidin tabanı kare biçimindedir. Yan yüzeyleri ise dört adet ikizkenar üçgenden oluşur. İkizkenar üçgenlerin taban uzunlukları piramidin tabanının bir kenarına eşittir.

Buradan yan yüz yüksekliği |PK|² = h² + (a/2 )² Y.alan=4.a × h² + (a/2 )²

Tüm alan= yanal alan +taban alan olduğundan; Tüm alan=4.a × h² + (a/2 )² + a² Hacim= 1/3.a².h

DİK KONİ Tabanı daire biçiminde olan piramide dik koni adı verilir.

Burada; Taban yarıçapı |OB| = r Cisim yüksekliği |PO| = h olur Burada; Taban yarıçapı |OB| = r Cisim yüksekliği |PO| = h olur. |PA| = |PB| = l uzunluğuna ana doğru denir. POB dik üçgeninde, h²+ r² = l² bağıntısı vardır. Koninin yanal alanı bir daire dilimidir.

Daire diliminin alanı, yay uzunluğu ile yarıçapın çarpımının yarısıdır Daire diliminin alanı, yay uzunluğu ile yarıçapın çarpımının yarısıdır. Yay uzunluğu taban çevresine eşit olduğundan, Yanal alan= πrl Tüm alan bulunurken, taban alanı da ilave edilir. Tüm alan =πrl + πr² V=1/3πr²h

KÜRE Uzayda bir noktadan eşit uzaklıktaki noktaların geometrik yerine küre yüzeyi denir. Küre yüzeyinin sınırladığı cisme küre adı verilir. Sabit noktaya kürenin merkezi, merkezin küre yüzeyine uzaklığına da kürenin yarı çapı denir

O merkezli R yarıçaplı kürede; Yüzey alanı ;

SİLİNDİR Tabanı daire olan prizmalara silindir denir. Silindirin yan yüzü dikdörtgen biçimindedir. Dikdörtgenin bir kenarı yükseklik kadar, diğer kenarı ise taban dairesinin çevresi kadardır.

Taban alanı= πr² Taban çevresi= 2πr olduğundan; Yanal alan= 2πrh Tüm alan= 2πr (h+r) Hacim= πr²h