GÜÇ ELEKTRONİĞİ Doç. Dr. N. ABUT

Slides:



Advertisements
Benzer bir sunumlar
8. SINIF 3. ÜNİTE BİLGİ YARIŞMASI
Advertisements

Akım,Direnç… Akım Akımın tanımı
TEMEL ELEKTRONİK EĞİTİMİ
Prof.Dr.Şaban EREN Yasar Üniversitesi Fen-Edebiyat Fakültesi
GÜNEŞ ENERJİ SİSTEMLERİ
Sensörler Öğr. Gör. Erol KINA.
SÜLEYMAN DEMİREL ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ
HACETTEPE ROBOT TOPLULUĞU TEMEL ELEKTRİK-ELEKTRONİK DERSİ
INVERTER NEDİR? NASIL ÇALIŞIR?
6.SINIF FEN ve TEKNOLOJİ TESTİ
NOKTA, DOĞRU, DOĞRU PARÇASI, IŞIN, DÜZLEMDEKİ DOĞRULAR
Alternatif Akım Devreleri
2.7.TRİSTÖR (SCR:Silicon Controlled Rectifier),
ÜNİTE DEĞERLENDİRMESİ 1.Sınıf Türkçe
YARI İLETKEN ELEMANLAR DİYOTLAR
Diferansiyel Denklemler
TEKNOLOJİNİN BİLİMSEL İLKELERİ
TEKNOLOJİNİN BİLİMSEL İLKELERİ
1 Yarıiletken Diyotlar.
Verim ve Açık Devre Gerilimi
Bohr Atom Modeli.
FEN VE TEKNOLOJİ DERSİ (VI. SINIF VI. ÜNİTE)
SÜLEYMAN DEMİREL ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ
Ohm Kanunu Direnç ve Çeşitleri Diyotlar LED’ler Transistörler
Yarıiletkenler - 2 Fizikte Özel Konular Sunu 2.
ZAMBAK 1 SORU BANKASI UĞUR CESUR 1 ZAMBAK 1 SORU BANKASI ÖZEL SORULARI Hazırlayan: UĞUR CESUR.
BORU HATLARINDA DOĞAL GAZIN AKIŞ ENERJİSİNDEN YARARLANILMASININ TEORİK BİR İNCELEMESİ Dr. Kemal BİLEN A THEORETICAL ANALYSIS OF BENEFITING FROM FLOW ENERGY.
2.4.TRANZİSTÖR Tranzistörler, iki amaçla kullanılan üç uçlulardır. Bu amaçlardan biri anahtar olarak kullanılması, diğeri ise yükseltici görevi yapacak.
Diyot Olarak Tranzistör
TRİSTÖR.
ELEKTRİK AKIMI
TEST – 1.
Yarıiletken Elemanlar
SENSÖR VE TRANSDUSERLER
Elektrik-Elektronik Mühendisliği için Malzeme Bilgisi
HABTEKUS' HABTEKUS'08 3.
8 ? E K S İ L E N EKSİLEN _ 5 5 ÇIKAN FARK(KALAN) 8.
Şekil Güç kaynağı blok diyagramı
Ek-2 Örnekler.
Şekil Diyotun yapısı ve sembolü
SÜLEYMAN DEMİREL ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ
Ders Sorumlusu: Yrd. Doç. Dr. Mustafa TURAN
ELEKTRİK VE MANYETİZMA
Toplama Yapalım Hikmet Sırma 1-A sınıfı.
AC Kuplajlı Yükselteçler Türev ile İntegral Devreleri
Bu slayt, tarafından hazırlanmıştır.
YARI İLETKENLER DİYOTLAR.
SEMRA BOZ FEN BİLĞİSİ ÖĞRETMENLİĞİ
GÜÇ ELEKTRONİĞİ Doç. Dr. N. ABUT
Elektrik-Elektronik Mühendisliği için Malzeme Bilgisi
KONDANSATÖRLER Kondansatörler elektrik enerjisi depo edebilen devre elemanlarıdır. İki iletken levha arasına dielektrik adı verilen bir yalıtkan madde.
ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ
Güç Transistörleri ve DA-DA Dönüştürücüler
Yarıiletken Elemanların ve
Elektrik ve elektronik mühendisliği alanında diyotlar için pek çok uygulama alanı bulunmuştur. Güç diyotları, elektrik gücünün dönüşümü için.
Bölüm 5 Atom Enerjisinin Kuantalanması
ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Dr. Ahmet KÜÇÜKER Sakarya Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü M6/6318 Dr.
ELEKTRİK AKIMI.
Diyot Giriş Diyot, transistör, tümleşik (entegre) devreler ve isimlerini buraya sığdıramadığımız daha birçok elektronik elemanlar, yarı iletken malzemelerden.
1.Hafta Transistörlü Yükselteçler 1
Yarı İletkenlerin Optik Özellikleri
ANAHTARLAMALI DA-DA ÇEVİRİCİLER YÜKSELTİCİ TİP (BOOST) ÇEVİRİCİLER
GÜÇ ELEKTRONİĞİ I Dicle Üniversitesi Mühendislik Fakültesi
Kuantum Teorisi ve Atomların Elektronik Yapısı
Analog Elektronik Hafta 1
1 Yarıiletken Diyotlar.
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
ELEKTR İ K VE ELEKTR İ KL İ ALANLARDA GÜVENL İ K BÜŞRA TET İ K BÜŞRA TET İ K - G D İ LARA KARAGÖZ D İ LARA KARAGÖZ - G SEM İ HA KARAARSLAN.
İSTANBUL GELİŞİM ÜNİVERSİTESİ
Sunum transkripti:

GÜÇ ELEKTRONİĞİ Doç. Dr. N. ABUT Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ GENEL KAPSAM GÜÇ ELEKTRONİĞİ Doç. Dr. Nurettin ABUT Kocaeli Üniversitesi Mühendislik Fakültesi Elektrik Mühendisliği Bölümü GÜÇ ELEKTRONİĞİ Doç. Dr. N. ABUT

BÖLÜM-2 YARIİLETKEN DEVRE ELEMANLARI Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ YARIİLETKENLER BÖLÜM-2 YARIİLETKEN DEVRE ELEMANLARI 2.1.YARIİLETKEN Jn=ATe-B/T A/cm2 (2.1) A:Katot malzemesine bağlı bir katsayı, T: Katot yüzeyinin mutlak sıcaklığı K, B=e.W/K şeklinde malzemeye bağlı bir ısıl katsayı olup e=1,6x10-19 C olarak elektronun yükü, W=1…6 [eV] değeri arasında çıkış enerjisi, K=1,38x10-23 Joule/K olarak Boltzmann sabitidir.

YARIİLETKEN DEVRE ELEMANLARI Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ YARIİLETKENLER YARIİLETKEN DEVRE ELEMANLARI 2.1.YARIİLETKEN foto elektronik emisyon Wp=hf=hc/ Joule (2.2) Wp:Bir fotonun taşıdığı enerji, h: 6,62x10-34 Joule.s olarak Planc sabiti, f:Elektro magnetik dalganın frekansı Hz, :Dalga boyu m, c: 3x108 m/s  olarak ışık hızıdır.

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ YARIİLETKENLER

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ YARIİLETKENLER

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ YARIİLETKENLER

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ YARIİLETKENLER

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT

Yayılım oyuk-akım yoğunluğu Jp; (2.4) şeklinde tanımlanabilir. Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT Yayılım oyuk-akım yoğunluğu Jp; (2.4)   şeklinde tanımlanabilir. Burada; Dp:oyuklar (elektronlar için Dn) için difüzyon sabiti m2/s dır. Toplam oyuk akımı veya difüzyon akımı;

Toplam oyuk akımı veya difüzyon akımı; (2.5) dır. Burada; Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT Toplam oyuk akımı veya difüzyon akımı;   (2.5) dır. Burada; p: oyuk hareket kabiliyeti cm2/Vs Genel anlamda bir iyonun hareket kabiliyeti olan ; v, hız cm/s ve , elektriksel alan V/cm olmak üzere 1 [V/cm]’lik bir elektriksel alanda, bu iyonun kazanabildiği =v/ hızıdır.

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT Toplam elektron akımı ise;   (2.6) olur. Burada; n: elektron hareket kabiliyeti cm2/Vs dır. (Silisyum eklemi için 300 K de 1500 cm2/Vs, germanyum için ise yaklaşık 3900 cm2/Vs değerindedir). Her zaman, np dır. Eklem bölgesinde, yük akışının ters yönünde, Şekil 2.5.(c) de görüldüğü gibi;   (2.7)  ile tanımlanabilen ve uzay yükü bölgesi potansiyeli de denen bir gerilim oluşur ve bir akım akar.

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT ve soğutucu profili

Diyot IA akımı, yaklaşık; (2.11) Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT Diyot Denklemi; diyot iletime kutuplandığında, teorik olarak;   (2.10) şeklinde bir akım akar. Burada; IS, diyot tıkama doyma akımı A, V:Diyotun iletime girmesini sağlayacak eşik gerilimi V, : Yarıiletken malzemeye bağlı bir sabit (Silisyum için normal akımda 2 alınabilir) tir. Diyot IA akımı, yaklaşık;   (2.11) şeklinde değişir. VA>V ise, IA > 0 olur.

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT Eşdeğer devresi

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT Eşdeğer devresi

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ DİYOT Eşdeğer devresi

Dr.N. Abut KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GÜÇ ELEKTRONİĞİ GENEL KAPSAM

Güç Elektroniği Dr. Nurettin ABUT Teşekkürler!!