Sabit Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans

Slides:



Advertisements
Benzer bir sunumlar
el ma 1Erdoğan ÖZTÜRK ma ma 2 Em re 3 E ren 4.
Advertisements

Sosyal Bilimlerde Araştırma Yöntemleri
Yrd. Doç. Dr. Mustafa Akkol
DOĞAL SAYILAR.
T.C. İNÖNÜ ÜNİVERSİTESİ Arapgir Meslek YÜKSEKOKULU
TİE Platformu Yürütme Kurulu Başkanı
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Atlayarak Sayalım Birer sayalım
BEIER CÜMLE TAMAMLAMA TESTİ
Diferansiyel Denklemler
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
H ATALARDA N ORMAL D AĞıLıM EKK tahmincilerinin olasılık dağılımları u i ’nin olasılık dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için.
EN KÜÇÜK ORTAK KAT.
İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ
KIR ÇİÇEKLERİM’ E RakamlarImIz Akhisar Koleji 1/A.
HOŞGELDİNİZ 2005 Yılı Gelir Vergisi Vergi Rekortmenleri
HİSTOGRAM OLUŞTURMA VE YORUMLAMA
Soruya geri dön
CAN Özel Güvenlik Eğt. Hizmetleri canozelguvenlik.com.tr.
GÖK-AY Özel Güvenlik Eğt. Hizmetleri
1/20 PROBLEMLER A B C D Bir fabrikada kadın ve çocuk toplam 122 işçi çalışmaktadır. Bu fabrikada kadın işçilerin sayısı, çocuk işçilerin sayısının 4 katından.
HAZIRLAYAN:SAVAŞ TURAN AKKOYUNLU İLKÖĞRETİM OKULU 2/D SINIFI
1/25 Dört İşlem Problemleri A B C D Sınıfımızda toplam 49 öğrenci okuyor. Erkek öğrencilerin sayısı, kız öğrencilerin sayısından 3 kişi azdır.
ÖRNEKLEM VE ÖRNEKLEME Dr.A.Tevfik SÜNTER.
TÜRKİYE KAMU HASTANELERİ KURUMU
İmalat Yöntemleri Teyfik Demir
Tam sayılarda bölme ve çarpma işlemi
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
Prof. Dr. Hüseyin BAŞLIGİL
KOŞULLU ÖNGÖRÜMLEME.
EĞİTİMDE ÖLÇME VE DEĞERLENDİRME
4 X x X X X
Mukavemet II Strength of Materials II
Yard. Doç. Dr. Mustafa Akkol
ANA BABA TUTUMU ENVANTERİ
1 DEĞİŞMEYİN !!!
Test : 2 Konu: Çarpanlar ve Katlar
ÇOK DEĞİŞKENLİ FONKSİYONLARDA
14.ULUSAL TURİZM KONGRESİ 2013 YILI BİLDİRİLERİ ÜZERİNE BİR DEĞERLENDİRME Prof. Dr. A. Celil ÇAKICI Mersin Üniversitesi Turizm Fakültesi.
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
Diferansiyel Denklemler
Bağımlı Kukla Değişkenler
GÖRÜNÜRDE İLİŞKİSİZ REGRESYON MODELLERİ
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
DOĞRUSAL OLMAYAN REGRESYON MODELLERİ…
İyi Bir Modelin Özellikleri
ÇOKLU DOĞRUSAL BAĞLANTI
Otokorelasyon ut = r ut-1 + et -1 < r < +1 Yt = a + bXt + ut 
OTOKORELASYON.
Otokorelasyon Y t =  +  X t + u t  u t =  u t-1 +  t -1 <  < +1 Birinci dereceden Otokorelasyon Cov (u t,u s )  0  Birinci Dereceden Otoregressif.
OTOKORELASYON.
Tüketim Gelir
ORTAK FAKTÖR TESTİ VE DİNAMİK MODEL SPESİFİKASYONU
Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan.
…ÇOKLU REGRESYON MODELİ…
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
OTOKORELASYON.
Hatalarda Normal Dağılım
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Hatalarda Normal Dağılım
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.
Sunum transkripti:

Sabit Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans EKKY’nin varsayımlarından biri anakütle regresyon fonksiyonu ui lerin eşit varyanslı olmasıdır. Her hata terimi varyansı bağımsız değişkenlerin verilen değerlerine göre s2 ye eşit aynı (sabit) bir değerdir. Bu nedenle eşit varyansa sabit varyans da denir. Y X

Sabit Varyansta Hataların Dağılımı Tüketim yt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xt Gelir

Sabit Varyans Durumu yt f(yt) Tüketim . . . . x1 x2 x3 x4 xt Gelir

Farklı Varyans Kavramı “Sabit varyans”(homoscedasticity) varsayımına göre verili açıklayıcı değişkenlerine bağlı olarak ’nin koşullu varyansı sabittir: “Farklı varyans” (heteroscedasticity) durumunda ise de-ğiştikçe ’nin koşullu varyansı da değişir: Farklı varyansa bir örnek olarak tasarrufların varyansının gelirle birlikte artmasını verebiliriz. Yüksek gelirli ailelerin tasarrufları, düşük gelirli ailelere oranla hem ortalama olarak daha çoktur hem de değişirliği daha fazladır. i=1, 2,..,n

Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = si2  Farklı Varyans Hata Zaman

Farklı Varyansta Hataların Dağılımı Tüketim . yt . Gelir xt

. . . Farklı Varyans Durumu yt f(yt) Tüketim x1 x2 x3 Gelir x t Zengin bireyler . Yoksul bireyler x1 x2 x3 Gelir x t

Farklı Varyansın Nedenleri Hata terimi varyansının değişken olma nedenlerinden bazıları şunlardır: “Hata öğrenme” (error learning) modellerine göre bireyler bazı konuları öğrendikçe daha az hata yaparlar. Buna göre de nin de zamanla küçülmesi beklenir. Örnek olarak, bilgisayarda klavye kullanma süresi arttıkça hem klavye hataları hem de bunların varyansları azalır.

Farklı Varyansın Nedenleri Gelir düzeyi arttıkça gelirin harcanabileceği seçenekler de genişler. Böylece, gelir düzeyi ile birlikte hem harcamaların hem de bunların varyanslarının artması beklenir. Zaman içerisinde veri derleme tekniklerinin gelişmesine koşut olarak de düşebilir. Farklı varyans “dışadüşen”(outlier) gözlemlerin bir sonucu olarak da ortaya çıkabilir.Böyle gözlemlerin alınması ya da bırakılması, özellikle de örneklem küçükken sonuçları önemli ölçüde değiştirebilir.

Farklı Varyansın Nedenleri Farklı varyansın bir diğer nedeni de model belirleme (spesifikasyon) hatasıdır. Özellikle de önemli bir değişkenin modelden çıkartılması farklı varyansa yol açabilir. Farklı varyans sorunu yatay kesit verilerinde zaman serisi verilerine oranla daha fazla görülebilmektedir. Bunun nedeni, zaman serilerinde değişkenlerin zaman içerisinde yakın büyüklüklerde olma eğilimidir.

Farklı Varyans ile Karşılaşılan Durumlar Kesit Verilerinde. Kar dağıtım modellerinde. Sektör modellerinde. Ücret modellerinde. Deneme - Yanılma modellerinde.

En Küçük Kareler İle İlgili Özellikleri 1. En Küçük Kareler Tahmincileri doğrusal ve sapmasızdır. 2. Katsayı tahmincileri etkin değildir. 3. En Küçük kareler tahmincilerinin standart hataları doğru değildir. 4. Standart hata formulleri doğru olmadığından güven aralıkları ve hipotez testleri geçerli değildir.

S (xt - x )2 S st 2(xt - x )2 [S (xt - x )2]2 yt = b1 + b2xt + et s2 Farklı varyans durumunda: En küçük kareler varyans formulu geçersizdir: var(b2) = s2 S (xt - x )2 Enküçük kareler varyans formulu aşağıdaki gibi düzeltilmelidir.: var(b2) = S st 2(xt - x )2 [S (xt - x )2]2

Farklı Varyansın Belirlenmesi Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. White testi ile. Lagrange çarpanları testi ile

Grafik Yöntem

Grafik Yöntem

Grafik Yöntem

Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r  0 ttab =? 2.Aşama a = ? s.d.=? 3.Aşama 4.Aşama thes > ttab H0 hipotezi reddedilebilir

Sıra Korelasyonu Testi X e Xs es di2 di 75 88 95 125 115 127 165 172 183 225 80 100 120 140 160 180 200 220 240 260 7.0545 4.7091 -3.6364 11.0182 -14.327 -17.672 4.9818 -3.3636 -7.7091 18.9455 1 2 3 4 5 6 7 8 9 10 5 -4 16 3 -1 1 2 1 1 7 -3 9 8 -3 9 9 -3 9 4 3 9 1 7 49 6 3 9 10 Sdi2=112 Mutlak değerli olarak bulundukları yer itibariyle küçükten büyüğe sıra numarası verilir d=Xs -es

Sıra Korelasyonu Testi = 0.3212 1.Aşama H0: r = 0 H1: r  0 ttab = 2.306 2.Aşama a = 0.05 s.d.= 8 3.Aşama = 0.9593 4.Aşama thes < ttab H0 hipotezi reddedilemez.

Goldfeld-Quandt Testi Büyük örneklere uygulanan bir F testidir. Bu test s2i nin farklı varyansının bağımsız değişkenlerden biri ile pozitif ilişkili olduğunu varsayar. s2i Xi ile pozitif (aynı yönde) ilişkilidir ve s2i farklı varyansı X’in karesi ile orantılıdır. Yani Xi değerleri arttıkça s2i değeri de artmaktadır.

Goldfeld-Quandt Testi Y = b1 + b2 X2 + b3 X3+ ... + bk Xk + u Y X2s X3 ... Xk I.Alt Örnek n1 YI = b11 + b21 X2 + b31 X3+ ... + bk1 Xk + u Se12=? Çıkarılan Gözlemler n(1/6) < c < n(1/3) II.Alt Örnek n2 YII = b12 + b22 X2 + b32 X3+ ... + bk2 Xk + u Se22=?

Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = ? Ftab =? 3.Aşama X bağımsız değişkeninin değerleri küçükyen büyüğe doğru ilgili Y bağımlı değişkeninin değerleri de taşınarak sıralanır. Ortadan c kadar gözlem çıkarılır. 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

Yıl Tasarruf Gelir 1 264 8777 2 105 9210 3 90 9954 4 131 10508 5 122 10979 6 107 11912 7 406 12747 8 503 13499 9 431 14269 10 588 15522 11 898 16730 12 950 17663 13 779 18575 14 819 19635 15 1222 21163 16 1702 22880 17 1578 24127

Gelir bağımsız değişkenine göre tasarrufu da sıralıyoruz. Yıllar Tasarruf Gelir 18 1654 25604 19 1400 26500 20 2017 27430 21 1829 27670 22 1600 28150 23 2200 28300 24 2105 29560 25 2250 32100 26 2420 32500 27 1720 33500 28 2570 35250 29 1900 36000 30 2100 36200 31 2300 38200 Gelir bağımsız değişkenine göre tasarrufu da sıralıyoruz.

Ortadan 31/4=8 veya 9 gözlem çıkarılacak. İki alt grup oluşturuldu. Tasarrfuf Gelir n2 1 264 8777 1829 27670 2 105 9210 1600 28150 3 90 9954 2200 28300 4 131 10508 2105 29560 5 122 10979 2250 32100 6 107 11912 2420 32500 7 406 12747 1720 33500 8 503 13499 2570 35250 9 431 14269 1900 36000 10 588 15522 2100 36200 11 898 16730 2300 38200 Gelire göre sırandı. Ortadan 31/4=8 veya 9 gözlem çıkarılacak. İki alt grup oluşturuldu.

(195.4) (0.015) (0.025) (817.3)

Fhes > Ftab f1=f2=(n-c-2k)/2=9 sd de Ftab=3.18 H0 hipotezi reddedilebilir

Goldfeld-Quandt Test lnMaas = b1 + b2 Yıl + b3 Yıl2 n/3=222/3≈72 Dependent Variable: lnMaas Included observations: 222 Variable Coefficient Std. Error t-Statistic Prob. C 3.809365 0.041338 92.15104 0.0000 Yıl 0.043853 0.004829 9.081645 0.0000 Yıl2 -0.000627 0.000121 -5.190657 0.0000 R-squared 0.536179 Mean dependent var 4.325410 Adjusted R-squared 0.531943 S.D. dependent var 0.302511 S.E. of regression 0.206962 Akaike info criterion -0.299140 Sum squared resid 9.380504 Schwarz criterion -0.253158 Log likelihood 36.20452 F-statistic 126.5823 Durbin-Watson stat 1.618981 Prob(F-statistic) 0.000000

Goldfeld-Quandt Test 1.alt örnek sonuçları: Dependent Variable: lnmaas Sample: 1 75 Included observations: 75 Variable Coefficient Std. Error t-Statistic Prob. C 3.954106 0.059538 66.41324 0.0000 Yıl -0.021930 0.021019 -1.043349 0.3003 Yıl2 0.004375 0.001600 2.733929 0.0079 R-squared 0.465625 Mean dependent var 4.031098 Adjusted R-squared 0.450781 S.D. dependent var 0.167536 S.E. of regression 0.124160 Akaike info criterion -1.295318 Sum squared resid 1.109926 Schwarz criterion -1.202619 Log likelihood 51.57443 F-statistic 31.36845 Durbin-Watson stat 1.807774 Prob(F-statistic) 0.000000

Goldfeld-Quandt Test 2.Altörnek Sonuçları: Dependent Variable: lnmaas Sample: 148 222 Included observations: 75 Variable Coefficient Std. Error t-Statistic Prob. C 4.007507 0.976346 4.104598 0.0001 Yıl 0.019928 0.060603 0.328823 0.7432 Yıl2 -0.000102 0.000920 -0.110443 0.9124 R-squared 0.078625 Mean dependent var 4.513929 Adjusted R-squared 0.053031 S.D. dependent var 0.231175 S.E. of regression 0.224962 Akaike info criterion -0.106594 Sum squared resid 3.643762 Schwarz criterion -0.013895 Log likelihood 6.997288 F-statistic 3.072027 Durbin-Watson stat 1.684803 Prob(F-statistic) 0.052446

Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = 0.05 1.43<Ftab<1.53 = 3.2830 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

White Testi Y = b1 + b2 X2 + b3 X3+ u White Testi için yardımcı regresyon: u2 = a1 + a2 X2 + a3 X3+ a4 X22 + a5 X32 + a6 X2X3 + v Ry2 = ? White Testi Aşamaları: 1.Aşama H0: a2 = a3 = a4 = a5 = a6=0 H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama s.d.= k-1 c2tab=? a = ? 3.Aşama W= n.Ry2 = ? W > c2tab H0 hipotezi reddedilebilir 4.Aşama

White Testi lnMaaş = 3.8094 + 0.0439yıl - 0.0006 yıl2 White Testi için yardımcı regresyon: e2= -0.0018 + 0.0002 Yıl + 0.0007 Yıl2- 0.00003 Yıl3 + 0.0000004Yıl4 Ry2 = 0.0901 1.Aşama H0: a2 = a3 = a4 = a5=0 ; H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama a = 0.05 s.d.=5-1=4 c2tab=9.4877 3.Aşama W= n.Ry2 = 222(0.0901)= 20.0022 4.Aşama W > c2tab H0 hipotezi reddedilebilir

Lagrange Çarpanları(LM) Testi Y = b1 + b2 X2 + b3 X3+ u LM testi için yardımcı regresyon: Ry2 = ? LM Testi Aşamaları: 1.Aşama H0: b = 0 H1 : b0 2.Aşama s.d.= 1 c2tab=? a = ? 3.Aşama LM= n.Ry2 = ? LM > c2tab H0 hipotezi reddedilebilir 4.Aşama

Lagrange Çarpanları(LM) Testi lnmaaş = 3.8094 + 0.0439yıl - 0.0006 yıl2 LM Testi için yardımcı regresyon: e2 = -0.2736 + 0.0730 (lnmaas-tah)2 Ry2 = 0.0537 1.Aşama H0: b = 0 H1 : b0 2.Aşama a = 0.05 s.d.=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 222(0.0537)= 11.9214 4.Aşama LM > c2tab H0 hipotezi reddedilebilir

UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile Sayısı Y X u 1 2.2 2.8 -0.75464 17 1.5 2 -1.25412 3 3.5 -0.1301 18 5.8 7.2 1.74247 4.1 13.5 -1.53666 19 8.2 18.1 1.41032 4 -0.80818 20 4.3 6.2 0.49313 5 4.2 5.9 0.46833 21 9.4 16.1 3.11164 6 6.3 15.3 0.21216 22 5.1 25.2 -3.46933 7 4.6 9.7 -0.08417 23 2.4 -1.90818 8 8.8 26.4 -0.07012 24 8.1 13.4 2.48841 9 7.3 18.2 0.48526 25 4.9 5.6 1.24352 10 4.4 6.7 0.4678 26 -0.30556 11 11.3 1.61478 27 0.14142 12 4.7 0.06911 28 1.9 -1.2301 13 6.8 26.3 -2.04505 29 2.6 12.4 -2.76094 14 22.3 -0.64243 30 3.9 0.56938 15 3.1 6.1 -0.68181 31 12.9 1.51373 16 3.2 -0.6549 32 11.2 26.5 2.30482

UYGULAMA: Yi = 0 + 1Xi + i modeli için sabit varyans varsayımının geçerli olup olmadığını Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. White testi ile. Lagrange çarpanı testi ile inceleyiniz.

Grafik Yöntem

Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r  0 ttab =? 2.Aşama a = 0.05 s.d.=? 3.Aşama 4.Aşama thes > ttab H0 hipotezi reddedilebilir

Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r  0 ttab = 2.042 2.Aşama a = 0.05 s.d.= 30 = 1.9454 4.Aşama thes < ttab H0 hipotezi reddedilemez.

Goldfeld-Quandt Testi c = 32 / 5 = 6.4 6 gözlem atılacak. (14.-19. gözlemler) 13 gözlemden oluşan iki grup için modeller 1.-13. gözlemler için Yi = 0.5096 + 0.6078Xi 20.-32. gözlemler için Yi = 3.8153 + 0.1723Xi

Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = 0.05 Ftab =2.82 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

White Testi White Testi için yardımcı regresyon: e2= -0.6909 + 0.3498X – 0.0058X2 Ry2 = 0.2296 1.Aşama H0: a2 = a3 = 0 ; H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama a = 0.05 s.d.=3-1=2 c2tab=5.99 3.Aşama W= n.Ry2 = 32(0.2296) = 7.3472 4.Aşama W > c2tab H0 hipotezi reddedilebilir

Lagrange Çarpanları(LM) Testi LM Testi için yardımcı regresyon: Ry2 = 0.201 1.Aşama H0: b = 0 H1 : b0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.201) = 6.432 4.Aşama LM > c2tab H0 hipotezi reddedilebilir

FARKLI VARYANSI ORTADAN KALDIRMA YOLLARI Farklı varyans durumunda EKKY tahmincileri etkinlik özelliklerini kaybettiklerinden güvenilir değildirler. Bu sebeple farklı varyans ortadan kaldırılmadan EKKY uygulanmamalıdır. Yi lerin (veya ui lerin) farklı varyansları s2i nin bilinip bilinmemesine göre farklı varyansı kaldıran iki yol vardır: nin BİLİNMESİ HALİ nin BİLİNMEMESİ HALİ

Genelleştirilmiş EKKY(GEKKY) nin BİLİNMESİ HALİ Genelleştirilmiş EKKY(GEKKY) Yi = b1 + b2 Xi + ui

Genelleştirilmiş EKKY(GEKKY) Sabit terimi yoktur. İki tane bağımsız değişken vardır.

Genelleştirilmiş EKKY(GEKKY)

Genelleştirilmiş EKKY(GEKKY)

EKKY ve GEKKY Arasındaki Fark min GEKKY min

nin BİLİNMEMESİ HALİ 1.HAL: LOGARİTMİK DÖNÜŞÜMLER 2 .HAL:

nin BİLİNMEMESİ HALİ 3 .HAL:

nin BİLİNMEMESİ HALİ 4 .HAL: bölünür

nin BİLİNMEMESİ HALİ 5 .HAL:

UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile Sayısı Y X u 1 2.2 2.8 -0.75464 17 1.5 2 -1.25412 3 3.5 -0.1301 18 5.8 7.2 1.74247 4.1 13.5 -1.53666 19 8.2 18.1 1.41032 4 -0.80818 20 4.3 6.2 0.49313 5 4.2 5.9 0.46833 21 9.4 16.1 3.11164 6 6.3 15.3 0.21216 22 5.1 25.2 -3.46933 7 4.6 9.7 -0.08417 23 2.4 -1.90818 8 8.8 26.4 -0.07012 24 8.1 13.4 2.48841 9 7.3 18.2 0.48526 25 4.9 5.6 1.24352 10 4.4 6.7 0.4678 26 -0.30556 11 11.3 1.61478 27 0.14142 12 4.7 0.06911 28 1.9 -1.2301 13 6.8 26.3 -2.04505 29 2.6 12.4 -2.76094 14 22.3 -0.64243 30 3.9 0.56938 15 3.1 6.1 -0.68181 31 12.9 1.51373 16 3.2 -0.6549 32 11.2 26.5 2.30482 56

1.HAL: LOGARİTMİK DÖNÜŞÜMLER 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0178) = 0.5696 4.Aşama LM < c2tab H0 hipotezi reddedilemez.

2 .HAL: 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0509) = 1.6288 4.Aşama LM < c2tab H0 hipotezi reddedilemez.

3 .HAL: 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.2365) = 7.568 4.Aşama LM > c2tab H0 hipotezi reddedilebilir.

5 .HAL: 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0290) = 0.928 4.Aşama LM < c2tab H0 hipotezi reddedilemez.