Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.

Slides:



Advertisements
Benzer bir sunumlar
el ma 1Erdoğan ÖZTÜRK ma ma 2 Em re 3 E ren 4.
Advertisements

Yrd. Doç. Dr. Mustafa Akkol
Prof.Dr.Şaban EREN Yasar Üniversitesi Fen-Edebiyat Fakültesi
DOĞAL SAYILAR.
T.C. İNÖNÜ ÜNİVERSİTESİ Arapgir Meslek YÜKSEKOKULU
KİŞİSEL KAMP MALZEMEN Kamp malzemelerini şu ana başlıklar altında düşünebilirsin. Uyku malzemesi Yemek malzemesi Temizlik malzemesi Zorluklara karşı hazır.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Sabit Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Atlayarak Sayalım Birer sayalım
ÇÖZÜM SÜRECİNE TOPLUMSAL BAKIŞ
BEIER CÜMLE TAMAMLAMA TESTİ
Diferansiyel Denklemler
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
H ATALARDA N ORMAL D AĞıLıM EKK tahmincilerinin olasılık dağılımları u i ’nin olasılık dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için.
VOLEYBOL İNDEKS (OYUNCULARIN FİZİK YETENEKLERİNİN ÖLÇÜMÜ)
BEIER CÜMLE TAMAMLAMA TESTİ
DÖNEM SONU İŞLEMLERİ ÜNİTE 4 STOKLAR.
KIR ÇİÇEKLERİM’ E RakamlarImIz Akhisar Koleji 1/A.
HOŞGELDİNİZ 2005 Yılı Gelir Vergisi Vergi Rekortmenleri
HİSTOGRAM OLUŞTURMA VE YORUMLAMA
Soruya geri dön
Prof. Dr. Leyla Küçükahmet
MÜRŞİT BEKTAŞ 1-A SINIFI
CAN Özel Güvenlik Eğt. Hizmetleri canozelguvenlik.com.tr.
GÖK-AY Özel Güvenlik Eğt. Hizmetleri
“Dünyada ve Türkiye’de Pamuk Piyasaları ile İlgili Gelişmeler”
1/20 PROBLEMLER A B C D Bir fabrikada kadın ve çocuk toplam 122 işçi çalışmaktadır. Bu fabrikada kadın işçilerin sayısı, çocuk işçilerin sayısının 4 katından.
HAZIRLAYAN:SAVAŞ TURAN AKKOYUNLU İLKÖĞRETİM OKULU 2/D SINIFI
1/25 Dört İşlem Problemleri A B C D Sınıfımızda toplam 49 öğrenci okuyor. Erkek öğrencilerin sayısı, kız öğrencilerin sayısından 3 kişi azdır.
ÖRNEKLEM VE ÖRNEKLEME Dr.A.Tevfik SÜNTER.
CBÜ HAFSA SULTAN HASTANESİ ENFEKSİYON KONTROL KOMİTESİ 2011 OCAK-ARALIK 2012 OCAK- MART VERİLERİ.
1/20 BÖLME İŞLEMİ A B C D : 4 işleminde, bölüm kaçtır?
TÜRKİYE KAMU HASTANELERİ KURUMU
1 YASED BAROMETRE 18 MART 2008 İSTANBUL.
İL KOORDİNASYON KURULU I.NCİ DÖNEM TOPLANTISI
İmalat Yöntemleri Teyfik Demir
Tam sayılarda bölme ve çarpma işlemi
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
EĞİTİMDE ÖLÇME VE DEĞERLENDİRME
RUHU ŞAD OLSUN.
4 X x X X X
Mukavemet II Strength of Materials II
Yard. Doç. Dr. Mustafa Akkol
ANA BABA TUTUMU ENVANTERİ
1 DEĞİŞMEYİN !!!
Test : 2 Konu: Çarpanlar ve Katlar
100 Yetişkine İlişkin Kolesterol Değerleri
Katsayılar Göstergeler
ÇOK DEĞİŞKENLİ FONKSİYONLARDA
14.ULUSAL TURİZM KONGRESİ 2013 YILI BİLDİRİLERİ ÜZERİNE BİR DEĞERLENDİRME Prof. Dr. A. Celil ÇAKICI Mersin Üniversitesi Turizm Fakültesi.
Proje Konuları.
PÇAĞEXER / SAYILAR Ali İhsan TARI İnş. Yük. Müh. F5 tuşu slaytları çalıştırmaktadır.
Diferansiyel Denklemler
Bağımlı Kukla Değişkenler
GÖRÜNÜRDE İLİŞKİSİZ REGRESYON MODELLERİ
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
İyi Bir Modelin Özellikleri
ÇOKLU DOĞRUSAL BAĞLANTI
Otokorelasyon ut = r ut-1 + et -1 < r < +1 Yt = a + bXt + ut 
OTOKORELASYON.
Otokorelasyon Y t =  +  X t + u t  u t =  u t-1 +  t -1 <  < +1 Birinci dereceden Otokorelasyon Cov (u t,u s )  0  Birinci Dereceden Otoregressif.
OTOKORELASYON.
Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin.
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Sunum transkripti:

Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X

Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = si2  Farklı Varyans Hata Zaman

Farklı Varyans ile Karşılaşılan Durumlar Kesit Verilerinde. Kar dağıtım modellerinde. Sektör modellerinde. Ücret modellerinde. Deneme - Yanılma modellerinde.

Farklı Varyansı Gözardı Etmenin Sonuçlar Tahminci Özelliklerine etkisi. Tahminciler sapmasız ve tutarlıdırlar. ancak etkin değildirler. Hipotez testleri üzerine etkisi. Tahminciler minimum varyanslı olma özelliklerini kaybettiklerinden. bunlara bağlı olarak elde edilen t ve F istatistiklerine ve elde edilen güven aralıklarına güvenilemeyecektir. Öngörümleme üzerine etkisi. Önceden değerleri sapmalı olacaktır.

Farklı Varyansın Tesbit Edilmesi Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile.

Grafik Yöntem

Grafik Yöntem

Grafik Yöntem

Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r  0 ttab =? 2.Aşama a = ? s.d.=? 3.Aşama 4.Aşama thes > ttab H0 hipotezi reddedilebilir

Sıra Korelasyonu Testi X e Xs es di2 di 75 88 95 125 115 127 165 172 183 225 80 100 120 140 160 180 200 220 240 260 7.0545 4.7091 -3.6364 11.0182 -14.327 -17.672 4.9818 -3.3636 -7.7091 18.9455 1 2 3 4 5 6 7 8 9 10 5 -4 16 3 -1 1 2 1 1 7 -3 9 8 -3 9 9 -3 9 4 3 9 1 7 49 6 3 9 10 Sdi2=112

Sıra Korelasyonu Testi = 0.3212 1.Aşama H0: r = 0 H1: r  0 ttab = 2.306 2.Aşama a = 0.05 s.d.= 8 3.Aşama = 0.9593 4.Aşama thes < ttab H0 hipotezi reddedilemez.

Goldfeld-Quandt Testi Y = b1 + b2 X2 + b3 X3+ ... + bk Xk + u Y X2s X3 ... Xk I.Alt Örnek n1 YI = b11 + b21 X2 + b31 X3+ ... + bk1 Xk + u Se12=? Çıkarılan Gözlemler n(1/6) < c < n(1/3) II.Alt Örnek n2 YII = b12 + b22 X2 + b32 X3+ ... + bk2 Xk + u Se22=?

Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = ? Ftab =? 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

Goldfeld-Quandt Test lnMaas = b1 + b2 Yıl + b3 Yıl2 Dependent Variable: lnMaas Included observations: 222 Variable Coefficient Std. Error t-Statistic Prob. C 3.809365 0.041338 92.15104 0.0000 Yıl 0.043853 0.004829 9.081645 0.0000 Yıl2 -0.000627 0.000121 -5.190657 0.0000 R-squared 0.536179 Mean dependent var 4.325410 Adjusted R-squared 0.531943 S.D. dependent var 0.302511 S.E. of regression 0.206962 Akaike info criterion -0.299140 Sum squared resid 9.380504 Schwarz criterion -0.253158 Log likelihood 36.20452 F-statistic 126.5823 Durbin-Watson stat 1.618981 Prob(F-statistic) 0.000000

Goldfeld-Quandt Test 1.alt örnek sonuçları: Dependent Variable: lnmaas Sample: 1 75 Included observations: 75 Variable Coefficient Std. Error t-Statistic Prob. C 3.954106 0.059538 66.41324 0.0000 Yıl -0.021930 0.021019 -1.043349 0.3003 Yıl2 0.004375 0.001600 2.733929 0.0079 R-squared 0.465625 Mean dependent var 4.031098 Adjusted R-squared 0.450781 S.D. dependent var 0.167536 S.E. of regression 0.124160 Akaike info criterion -1.295318 Sum squared resid 1.109926 Schwarz criterion -1.202619 Log likelihood 51.57443 F-statistic 31.36845 Durbin-Watson stat 1.807774 Prob(F-statistic) 0.000000

Goldfeld-Quandt Test 2.Altörnek Sonuçları: Dependent Variable: lnmaas Sample: 148 222 Included observations: 75 Variable Coefficient Std. Error t-Statistic Prob. C 4.007507 0.976346 4.104598 0.0001 Yıl 0.019928 0.060603 0.328823 0.7432 Yıl2 -0.000102 0.000920 -0.110443 0.9124 R-squared 0.078625 Mean dependent var 4.513929 Adjusted R-squared 0.053031 S.D. dependent var 0.231175 S.E. of regression 0.224962 Akaike info criterion -0.106594 Sum squared resid 3.643762 Schwarz criterion -0.013895 Log likelihood 6.997288 F-statistic 3.072027 Durbin-Watson stat 1.684803 Prob(F-statistic) 0.052446

Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = 0.05 1.43<Ftab<1.53 = 3.2830 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

Breusch – Pagan Testi Yi = b1 + b2 X2i + b3 X3i+……+ bk Xki +ui (1) 1.Aşama (1) Nolu denklem EKKY ile tahmin edilip. e1,e2, …,en örnek hata terimleri hesaplanır. Bu ei lerden hareketle 2.Aşama 3.Aşama pi = a1 + a2 Z2i + a3 Z3i+……+ amZmi +vi (2) RBD = ?

Breusch – Pagan Testi 4.Aşama 5.Aşama H0 : a2= a3 =…..=am = 0 (Eşit varyans) H1 : En az biri sıfırdan farklıdır. (Farklı varyans) H0 reddedilir.

Breusch – Pagan Testi IT: İthalat

Breusch – Pagan Testi 1.Aşama 2.Aşama pi 0.045111 0.018977 0.006813 0.064343 0.004446 0.42876 0.000964 1.914014 0.055765 1.384578 0.266704 0.285573 0.540614 1.163423 2.802939 0.820382 9.764475 0.15752 0.194494 0.080743

Breusch – Pagan Testi 3.Aşama RBD = 4.59 4.Aşama 5.Aşama H0 : a2 = a3 =…..=am = 0 (Eşit varyans) H1 : En az biri sıfırdan farklıdır. (Farklı varyans) H0 reddedilemez.

Glejser Farklı Varyans Testi 1.Aşama: Y ile X (veya X’ler) arasındaki ilişki tahmin edilerek, ilgili örnek hata terimleri e’ler bulunur. 2.Aşama: i2 ile ilişkili olduğu düşünülen bağımsız değişken için aşağıdaki modeller denenmektedir.

Glejser Farklı Varyans Testi 3.Aşama: Korelasyon katsayısı ve a’ların standat hata değerlerine göre en uyun model seçilip H0 : a2 = 0 H1 : a2 ≠ 0 test edilir. 4.Aşama: H0 kabul edilirse eşit varyans gerçeklemiştir sonucuna varılır.

Glejser Farklı Varyans Testi 1.Aşama: IT: İthalat

Glejser Farklı Varyans Testi 2.Aşama: 3.Aşama: H0 : a2 = 0 H1 : a2 ≠ 0 4.Aşama: Prob = 0.2058 > 0.05 H0 reddedilemez. Eşit varyans gerçekleşmiştir.

White Testi Y = b1 + b2 X2 + b3 X3+ u White Testi için yardımcı regresyon: u2 = a1 + a2 X2 + a3 X3+ a4 X22 + a5 X32 + a6 X2X3 + v Ry2 = ? White Testi Aşamaları: 1.Aşama H0: a2 = a3 = a4 = a5 = a6=0 H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama s.d.= k-1 c2tab=? a = ? 3.Aşama W= n.Ry2 = ? W > c2tab H0 hipotezi reddedilebilir 4.Aşama

White Testi lnMaaş = 3.8094 + 0.0439yıl - 0.0006 yıl2 White Testi için yardımcı regresyon: e2= -0.0018 + 0.0002 Yıl + 0.0007 Yıl2- 0.00003 Yıl3 + 0.0000004Yıl4 Ry2 = 0.0901 1.Aşama H0: a2 = a3 = a4 = a5=0 ; H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama a = 0.05 s.d.=5-1=4 c2tab=9.4877 3.Aşama W= n.Ry2 = 222(0.0901)= 20.0022 4.Aşama W > c2tab H0 hipotezi reddedilebilir

Lagrange Çarpanları(LM) Testi Y = b1 + b2 X2 + b3 X3+ u LM testi için yardımcı regresyon: Ry2 = ? LM Testi Aşamaları: 1.Aşama H0: b = 0 H1 : b0 2.Aşama s.d.= k-1 c2tab=? a = ? 3.Aşama LM= n.Ry2 = ? LM > c2tab H0 hipotezi reddedilebilir 4.Aşama

Lagrange Çarpanları(LM) Testi lnmaaş = 3.8094 + 0.0439yıl - 0.0006 yıl2 LM Testi için yardımcı regresyon: e2 = -0.2736 + 0.0730 lnmaas-tah^2 Ry2 = 0.0537 1.Aşama H0: b = 0 H1 : b0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 222(0.0537)= 11.9214 4.Aşama LM > c2tab H0 hipotezi reddedilebilir

Ramsey Reset Testi Y = b1 + b2 X2 + b3 X3+…..+bkXk + ui 1.Aşama: Ramsey Reset testi için yardımcı regresyon: 2.Aşama: H0: ai = 0 (Eşit Varyans) H1: ai ≠ 0 (Farklı Varyans) Hipotezler  hata payı ile t tablosundan bulunacak değer ile karşılaştırılır. 3.Aşama: thes > ttab H0 reddedilir.

Ramsey Reset Testi 1.Aşama: 2.Aşama: H0: ai = 0 (Eşit Varyans) H1: ai ≠ 0 (Farklı Varyans)

Ramsey Reset Testi ttab = tn-k,a = t20-3, 0.05 = 2.110 3.Aşama: thesap = |-0.0561| < ttab = 2.110 Ho reddedilemez thesap = 0.1663 < ttab = 2.110 H0 reddedilemez.

Park Testi i2 bilinmediğinden bunun yerine hata kareler toplamı ei2 kullanılır.

Park Testi 1.Aşama: 2.Aşama: H0 :  = 0 (Eşit Varyans) H0 :  ≠ 0 (Farklı Varyans) t hes > t tab H0 reddedilir. 3.Aşama:

Park Testi 1.Aşama: 2.Aşama: H0 :  = 0 (Eşit Varyans) H0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t tab = t 18, 0.01 = 2.878 t hes < t tab H0 reddedilemez.

UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile Sayısı Y X u 1 2.2 2.8 -0.75464 17 1.5 2 -1.25412 3 3.5 -0.1301 18 5.8 7.2 1.74247 4.1 13.5 -1.53666 19 8.2 18.1 1.41032 4 -0.80818 20 4.3 6.2 0.49313 5 4.2 5.9 0.46833 21 9.4 16.1 3.11164 6 6.3 15.3 0.21216 22 5.1 25.2 -3.46933 7 4.6 9.7 -0.08417 23 2.4 -1.90818 8 8.8 26.4 -0.07012 24 8.1 13.4 2.48841 9 7.3 18.2 0.48526 25 4.9 5.6 1.24352 10 4.4 6.7 0.4678 26 -0.30556 11 11.3 1.61478 27 0.14142 12 4.7 0.06911 28 1.9 -1.2301 13 6.8 26.3 -2.04505 29 2.6 12.4 -2.76094 14 22.3 -0.64243 30 3.9 0.56938 15 3.1 6.1 -0.68181 31 12.9 1.51373 16 3.2 -0.6549 32 11.2 26.5 2.30482

UYGULAMA: Yi = 0 + 1Xi + i modeli için sabit varyans varsayımının geçerli olup olmadığını Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile.

Grafik Yöntem

Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r  0 ttab =? 2.Aşama a = 0.05 s.d.=? 3.Aşama 4.Aşama thes > ttab H0 hipotezi reddedilebilir

Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r  0 ttab = 2.042 2.Aşama a = 0.05 s.d.= 30 = 1.9454 4.Aşama thes < ttab H0 hipotezi reddedilemez.

Goldfeld-Quandt Testi c = 32 / 5 = 6.4 6 gözlem atılacak. (14.-19. gözlemler) 13 gözlemden oluşan iki grup için modeller 1.-13. gözlemler için Yi = 0.5096 + 0.6078Xi 20.-32. gözlemler için Yi = 3.8153 + 0.1723Xi

Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = 0.05 Ftab =2.82 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

Breusch – Pagan Testi 1.Aşama 2.Aşama

Breusch – Pagan Testi 3.Aşama RBD = 13.12 4.Aşama 5.Aşama H0 : a2 = a3 =…..=am = 0 (Eşit varyans) H1 : En az biri sıfırdan farklıdır. (Farklı varyans) H0 reddedilebilir.

Glejser Farklı Varyans Testi 1.Aşama: 2.Aşama: H0 : a2 = 0 H1 : a2 ≠ 0 3.Aşama:  = 0.05 n –k = 32 – 2 =30 ttab = 2.042 4.Aşama: thes > ttab H0 reddedilebilir. Eşit varyans gerçekleşmemiştir.

White Testi White Testi için yardımcı regresyon: e2= -0.6909 + 0.3498X – 0.0058X2 Ry2 = 0.2296 1.Aşama H0: a2 = a3 = 0 ; H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama a = 0.05 s.d.=3-1=2 c2tab=5.99 3.Aşama W= n.Ry2 = 32(0.2296) = 7.3472 4.Aşama W > c2tab H0 hipotezi reddedilebilir

Lagrange Çarpanları(LM) Testi LM Testi için yardımcı regresyon: Ry2 = 0.201 1.Aşama H0: b = 0 H1 : b0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.201) = 6.432 4.Aşama LM > c2tab H0 hipotezi reddedilebilir

Ramsey Reset Testi 1.Aşama: 2.Aşama: H0: ai = 0 (Eşit Varyans) H1: ai ≠ 0 (Farklı Varyans)

Ramsey Reset Testi ttab = tn-k,a = t32-3, 0.05 = 2.045 3.Aşama: thesap = 1.611 < ttab = 2.045 thesap = |-1.654| < ttab = 2.045 H0 reddedilemez.

Park Testi 1.Aşama: 2.Aşama: H0 :  = 0 (Eşit Varyans) H0 :  ≠ 0 (Farklı Varyans) 3.Aşama: t tab = t 32-2=30, 0.05 = 2.042 t hes < t tab H0 reddedilemez.

bilinmemesi durumu Yi = b1 + b2 Xi + ui Yi = b1 + b2 Xi + ui

UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile Sayısı Y X u 1 2.2 2.8 -0.75464 17 1.5 2 -1.25412 3 3.5 -0.1301 18 5.8 7.2 1.74247 4.1 13.5 -1.53666 19 8.2 18.1 1.41032 4 -0.80818 20 4.3 6.2 0.49313 5 4.2 5.9 0.46833 21 9.4 16.1 3.11164 6 6.3 15.3 0.21216 22 5.1 25.2 -3.46933 7 4.6 9.7 -0.08417 23 2.4 -1.90818 8 8.8 26.4 -0.07012 24 8.1 13.4 2.48841 9 7.3 18.2 0.48526 25 4.9 5.6 1.24352 10 4.4 6.7 0.4678 26 -0.30556 11 11.3 1.61478 27 0.14142 12 4.7 0.06911 28 1.9 -1.2301 13 6.8 26.3 -2.04505 29 2.6 12.4 -2.76094 14 22.3 -0.64243 30 3.9 0.56938 15 3.1 6.1 -0.68181 31 12.9 1.51373 16 3.2 -0.6549 32 11.2 26.5 2.30482 53

1.HAL: LOGARİTMİK DÖNÜŞÜMLER 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0178) = 0.5696 4.Aşama LM < c2tab H0 hipotezi reddedilemez.

2 .HAL: 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0509) = 1.6288 4.Aşama LM < c2tab H0 hipotezi reddedilemez.

3 .HAL: 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.2365) = 7.568 4.Aşama LM > c2tab H0 hipotezi reddedilebilir.

5 .HAL: 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0290) = 0.928 4.Aşama LM < c2tab H0 hipotezi reddedilemez.