Sosyal Bilimlerde Araştırma Yöntemleri

Slides:



Advertisements
Benzer bir sunumlar
Çıkarımsal İstatistik
Advertisements

Uygun Hipotezin Kurulması, Tip I Hata ve Tip II Hata
Hipotez Testleri Uygulamada çoğu zaman örneklem istatistikleri yardımıyla ana kütle parametreleri hakkında bir karara varmaya da çalışılmaktadır. Meselâ.
Kütle varyansı için hipotez testi
GİRİŞ BÖLÜM:1-2 VERİ ANALİZİ YL.
İKİ ÖRNEKLEM TESTLERİ.
HOŞGELDİNİZ ! FARUK AŞIK ZEYNEP AKÇA MURAT ŞİMŞEK
SPSS ile Temel İstatistiksel Analizlerin Yapılması
ANOVA.
Sosyal Bilimlerde Araştırma Yöntemleri
HİPOTEZ TESTLERİ.
HATA TİPLERİ Karar H0 Doğru H1 Doğru H0 Kabul Doğru Karar (1 - )
HİPOTEZ TESTLERİ.
Tıp alanında kullanılan temel istatistiksel kavramlar
Normal Dağılım.
İstatistikte Bazı Temel Kavramlar
PARAMETRİK ANALİZ TEKNİKLERİ
Prof. Dr. Hüseyin BAŞLIGİL
OLASILIK ve OLASILIK DAĞILIMLARI
ÖNEMLİLİK TESTLERİ Dr.A.Tevfik SÜNTER
Büyük ve Küçük Örneklemlerden Kestirme
SİU 2009 Sınıflandırıcılarda Hata Ölçülmesi ve Karşılaştırılması için İstatistiksel Yöntemler Ethem Alpaydın Boğaziçi Üniversitesi
Yaygınlık Ölçüleri Bir dağılımdaki değerlerin ortalamaya olan uzaklıkları farklılıklar gösterir. Bu farklılıkların derecesi dağılımın yaygınlığı kavramını.
İKİDEN ÇOK (K) ÖRNEKLEM TESTLERİ
SÜREKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK YOĞUNLUK FONKSİYONLARI
OLASILIK ve KURAMSAL DAĞILIMLAR
İki Ortalama Farkının Test Edilmesi
MATEMATİKSEL İSTATİSTİK VE OLASILIK II
SPSS ile Parametrik Olmayan Testlerin Yapılması
Hipotez Testi.
SPSS ile Temel İstatistiksel Analizlerin Yapılması
Örnekleme Yöntemleri Şener BÜYÜKÖZTÜRK, Ebru KILIÇ ÇAKMAK,
İSTATİSTİKTE GÜVEN ARALIĞI VE HATALAR
Önemlilik Testleri Örnekleme yoluyla sağlanan bilgiden hareketle; Kliniklerde hasta hayvanlara uygulanan yeni bir tedavi yönteminin eskisine kıyasla bir.
KRUSKAL WALLIS VARYANS ANALİZİ
HİPOTEZ TESTLERİ Hipotez Testlerinin Belirlenmesi Sıfır Hipotezi
Örneklem Mantığı II Yaşar Tonta H.Ü. Bilgi ve Belge YönetimiBölümü
HATA TİPLERİ Karar H0 Doğru H1 Doğru H0 Kabul Doğru Karar (1 - )
Yrd. Doç. Dr. Hamit ACEMOĞLU
Uygulama I.
HİPOTEZ TESTLERİNE GİRİŞ
Örneklem Dağılışları.
Bilişim Teknolojileri için İşletme İstatistiği
Bilişim Teknolojileri için İşletme İstatistiği
Tek Anakütle Ortalaması İçin Test
Maliye’de SPSS Uygulamaları Doç. Dr. Aykut Hamit Turan SAÜ İİBF/ Maliye Bölümü.
İletişim Fakültesi Bilişim A.B.D.
Örneklem Dağılışları ve Standart Hata
ANALİTİK YÖNTEM VALİDASYONU 5.ders
Güven Aralığı.
HİPOTEZ TESTLERİNE GİRİŞ
İSTATİSTİKTE TAHMİN ve HİPOTEZ TESTLERİ İSTATİSTİK
İKİ ÖRNEKLEM TESTLERİ Mann_Whitney U
Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis.
1 İ STATİSTİK II Tahminler ve Güven Aralıkları - 1.
Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis.
Uygun örneklem SayISI hesaplama Power (güç) analİzİ
Merkezi Eğilim Ölçüleri
ANLAM ÇIKARTICI (KESTİRİMSEL) İSTATİSTİK
Numerik Veri Tek Grup Prof. Dr. Hamit ACEMOĞLU.
İstatistiksel Analizler
HİPOTEZ TESTLERİ.
B- Yaygınlık Ölçüleri Standart Sapma ve Varyans Değişim Katsayısı
İstatistik-2 Çıkarımsal İstatistik
Tıp Fakültesi UYGULAMA 2
Hipotez Testinde 5 Aşamalı Model
İSTATİSTİK II Hipotez Testleri 1.
NİŞANTAŞI ÜNİVERSİTESİ
Hipotez Testleri (Model Hipotezinin Testi, Uyuşumsuz Ölçüler Testi)
Sunum transkripti:

Sosyal Bilimlerde Araştırma Yöntemleri Hipotez (Denence) Testleri

Hipotez Testleri İstatistiksel testler Hipotezleri ispatlamak ya da yanlışlamak için tasarlanmaz Testlerin amacı bir fikrin/iddianın gerçekleşme olasılığının ne kadar düşük/yüksek olduğunu göstermektir Ör., rastgele seçilen bir örneklem ortalamasının evren parametresinin artı-eksi iki standart sapma sınırları içinde olma olasılığı %95’tir

Beş Adımda Hipotez Testi Araştırma sorusu araştırma Hipotezi (H1) olarak formüle edilir Test istatistiğine (T) karar verilir Kritik bölge seçilir 4. Kritik bölgenin büyüklüğü kararlaştırılır 5. Sonuç yorumlanır

Örnek Geçen ders gördüğümüz standart normal dağılım (SND) ve olasılık kuramıyla ilgili bilgilerimizi test edelim Bir fotokopi makinesinde günde en az 70 kopya çekilmezse o makine ekonomik değil Kütüphaneye alınan bir makinenin ekonomik olup olmadığını test etmek istediğimizi varsayalım Rastgele seçilen 40 günde yapılan ölçümlerde çekim sayısı ortalama 66, standart sapma 7 olarak bulunmuş olsun Veriler normal dağılmış olsun %95 güvenle fotokopi makinesinin kârlı olup olmadığına karar veriniz

1. Adım Araştırma Hipotezi (H1): “Fotokopi makinesi kârlıdır” Boş denence (H0): “Fotokopi makinesi kârlı değildir” Aslında (H1) ve (H0)teknik olarak: “Evren ortalaması (70) örneklem ortalamasından (66) küçüktür / büyüktür” iddiasını içeriyor

2. Adım: Z Testi Z tablosu ± 3,49 arasında değişir (kuramsal evrenin %99,96’sı) Özgün Z tablosu 1/10’luk aralarla standart sapmayı gösterir Z tablosundaki birkaç değer önemli (çoğunlukla %95 ve %99’luk alanlar) SND’de %95 güvenle örneklem ortalaması evren ortalamasından 1,96, %99 güvenle 2,575 standart hata uzaklıktadır

2. Adım: Z Testi (devam) N=40, X=66, SS=7, =0,05 (, alfa, yanılma yüzdesi) Örneklemin standart hatasını (SH) bulalım: SH = 7/ 40 = 1,11 (SS örneklem büyüklüğünün kareköküne bölünür) %95 güven aralığını hesaplayalım: GA= X + (z * SH) = 66 + (1,96 * 1,11) = 66 + 2,18 = 68,18 GA= X - (z * SH) = 66 - (1,96 * 1,11) = 66 - 2,18 = 63,82

3. Adım: Kritik Bölge Seçimi 1. adımda üç farklı hipotez kurmuştuk Yönetici açısından örneklem ortalaması 66 olmasına rağmen makinenin kârlı olması önemli (yani 70 < 66, yani sol kuyruk testi) H1 : 70 < 66 (Sol kuyruk testi) H0 : 70 > 66 Ama denencenin yönüne göre sağ kuyruk testi ya da çift kuyruk testi tercih edilebilir (Sol kuyruk testi)

4. Adım: Kritik Bölgenin Büyüklüğüne Karar Verilmesi %95 güven aralığı 63,82 ile 68,12 Güven aralığı üst sınırı evren ortalamasından (70) düşük 64 66 68 70

5. Adım: Sonuç Örnek 1: T >= Tα ise H0 Red. Not: Sonuçtan önce hangi durumda boş hipotezin reddedileceğine karar verilmelidir. Parametrik testlerin çoğu normal dağılım varsayımıyla yapılır. Normal dağılım varsayımı parametrik olmayan testler için geçerli değildir.

5. Adım: Yorum Hangi durumda boş denencenin reddedileceğine karar verilir Yani seçilecek 100 örneklemden sadece beşi (aslında tek kuyruk testi yaptığımız için beşin yarısı) 68,12’den daha büyük bir örneklem ortalaması üretebilir Yani seçilecek bir başka örneklemin evren ortalamasından daha düşük örneklem ortalaması üretme olasılığı %95’ten fazla Bu durumda fotokopi makinesinin %95 güven düzeyinde kârlı olmadığına karar verilir. H1 reddedilir. Yani 70 < 66 değildir

Hata Yapmış Olabilir Miyiz? Olabiliriz, çünkü sadece bir örneklem seçtik ve %95 güvenle makine ekonomik değildir kararını verdik Ama 100 örneklemden 5’i böyle sonuç verebilir Belki bu 5 örneklemden 1’i bize rastladı Aslında kalan 95 örneklemde makine ekonomik sonucuna varılacak! Ya da tersini düşünelim: Makine ekonomik değil ama seçilen bir başka örneklem sonucuna göre makinenin ekonomik olduğuna karar verdik. Bu iki hatayı yapma olasılığımız her zaman var

Karar Bölgesi Durum H0 doğru H0 yanlış DOĞRU Tür 2 hatası Tür 1 hatası   Durum H0 doğru H0 yanlış Karar H0 Kabul DOĞRU Tür 2 hatası H0 Red Tür 1 hatası Tür 1 Hatası: Boş denence doğru, araştırma Hipotezi yanlış olduğu halde boş denenceyi reddetme. Tür 1 hatası  (alfa) ile gösterilir. Tür 2 Hatası: Boş denence yanlış, araştırma Hipotezi doğruyken boş denenceyi kabul etme. Tür 2 hatası  (beta) ile gösterilir. Tür 1 hatası Tür 2 hatasından daha tehlikelidir

Tür 1 ve Tür 2 Hataları Denence testi örneklem istatistiğiyle evren parametresi arasında fark olup olmadığını test eder (66  70) İkisinin eşit olması nadiren rastlanan bir durum Bu durumda fark şans eseri mi oluştu yoksa ikisi birbirinden gerçekten farklı mı? Tür 1 Hatası: Doğru (66 = 70) olmasına karşın H0’ın reddedilme olasılığı Tür 2 Hatası: Yanlış (66  70) olmasına karşın H0’ın kabul edilme olasılığı

Anlamlılık Düzeyleri ve Tür 1-Tür 2 Hataları Anlamlılık düzeyi: 0,05 100 boş denenceden 5’inin gerçekte doğru olmasına karşın reddedilmesi anlamına gelir Aynı evrenden rastgele seçilen iki örneklemin şans eseri birbirinden farklı olması demektir Tür 1 Hatası: Doğru olmasına karşın boş denenceyi reddetme olasılığı (yani gerçekte araştırma Hipotezi yanlış) Anlamlılık düzeyi 0,01 olursa bu olasılık %1’e düşer Ama o zaman da yanlış olduğu halde boş denenceyi kabul etme olasılığı (Tür 2 hatası) artar Tür 1 hatalarından daha çok sakınılır

(Kaynak: http://bit.ly/oig79c) Etki Büyüklüğü Bir test sonucunu yorumlamak için sadece anlamlılık düzeyine bakmak yeterli değil Test sonucu anlamlı olabilir ama etkisi düşük olabilir Farklı testlerde etki büyüklüğü farklı şekillerde hesaplanır Örneğimizde ortalamalar arasındaki farkı SS’ye bölerek bulunan etki büyüklüğü katsayısı (Cohen’s d) 0,57 Yani orta düzeyde bir etkiye karşılık geliyor Etki büyüklüğü: 0-0,2 arası: düşük; 0,5 civarı: orta; ve 0,8 ve daha yukarısı: büyük (Kaynak: http://bit.ly/oig79c)

İstatistiksel Testlerin Gücü Bir test sonucunu yorumlamak için anlamlılık düzeyi ve etki büyüklüğünün yanı sıra yapılan istatistiksel testin gücüne de bakılmalı Bir istatistiksel testin gücü yanlış boş denenceyi reddetme olasılığı ile ölçülür Güçlü istatistiksel testler H0 yanlışken isabetli bir biçimde H0’ı reddetme olasılığı (1 - ) yüksek olan testlerdir Bu olasılık en az 0,8 olmalı Bir testin gücü (1 - ) örneklem büyüklüğü, varyans ve anlamlılık düzeyi () ile ilişkilidir Kaynak: Field ve Hole, 2008, s. 152-156