JOMINY DENEYİ.

Slides:



Advertisements
Benzer bir sunumlar
ÇELİKLERE UYGULANAN ISIL İŞLEMLER
Advertisements

ŞEKİL HATIRLAMALI ALAŞIMLAR Neslihan SEL ÖZBEY
KARABÜK ÜNİVERSİTESİ ENERJİ SİSTEMLERİ VE İMALAT MÜHENDİSLİĞİ ARA SINAV SORULARI 4 NİSAN 2014.
TAŞLAMA TEZGÂHINDA TEMEL BİLGİ VE BECERİ İŞLEMLERİ
SERTLEŞEBİLİRLİK.
Düzlemsel anizotropiye sahip parçalar haddelenme yönünde , ona dik yönde veya bu 2 yönde herhangi bir açıya sahip yönde farklı plastik şekil değiştirme.
BÖLÜM 3 TALAŞ KALDIRMA SIRASINDA OLUŞAN ISI.
YÜKSEK MUKAVEMETLİ YENİ NESİLÇELİKLERİN ÜRETİMİ ve MEKANİK ÖZELLİKLERİ
Demir-Karbon Denge Diyağramı
ISIL İŞLEM TÜRLERİ.
Özel çelikler.
Dislokasyon yoğunluğunun dayanıma etkisi
DEMİR – KARBON ALAŞIMLARININ TTT DİYAGRAMLARI
İkinci kademede, yüksek sıcaklıklarda (≈ 850 oC) ostenit içinde karbon difüzyonu ve düşük sıcaklıklarda (≈ 750 oC) ferrit içinde mangan difüzyonu sonucu.
Kaliteli Teknik Resmin Üç Temel Niteliği:
MEKANİK TESTLER MEKANİK TESTLER.
Çalışma sırasında kırılma
Demİr ve demİrdIŞI metaller
ISIL İŞLEM UYGULAMALARI Mehmet ÇAKICI AR-GE & Proses Kontrol Sorumlusu
METALURJİ VE MALZEME MÜHENDİSLİĞİ BÖLÜMÜ
Bal Peteği (honeycomb) Kompozitler
ENDÜKSİYONLA ISITMA (EI, IH) GÜÇ KATSAYISI DÜZELTME (GKD, PFC) GÜÇ ELEKTRONİĞİ ENDÜKSİYONLA ISITMA (EI, IH) GÜÇ KATSAYISI DÜZELTME (GKD,
Karbürizasyon.
Deney No: 11 Bir Tuzun Çözünürlüğünün Tayini
GRİ (LAMEL GRAFİTLİ) DÖKME DEMİRLER
Kanalların eğimi, min. ve maks. hızlar
KOMPOST KALİTESİNİN BELİRLENMESİ İÇİN YAPILACA KANALİZLER
Moleküller arası çekim kuvvetleri. Sıvılar ve katılar.
TS 802 Haziran 2009 BETON TASARIMI KARIŞIM HESAPLARI
BASINÇ
FİZİKSEL METALURJİ BÖLÜM 5.
BİTKİ KATSAYISI, SULAMA RANDIMANI, ETKİLİ YAĞIŞ
Kırılma Mekaniğine Giriş
KOROZYONDAN KORUNMA.
SERTLİK ÖLÇME YÖNTEMLERİ
ÇİFT SİLİNDİR İNFİLTROMETRE İLE İNFİLTRASYON TESTLERİ
Materials and Chemistry İstanbul Üniversitesi Metalurji ve Malzeme Mühendisliği İstanbul Üniversitesi Metalurji ve Malzeme Mühendisliği Alümiyum Şekillendirme.
ITAB. ITAB Saf demirin soğuma eğrisi ve oluşan kristal yapıları -demiri (HMK) -demiri (YMK) -demiri (HMK Sıvı 911°C 1392°C 1538°C Zaman Sıvı + 
ÇELİKLERE UYGULANAN ISIL İŞLEMLER
HADDELEME Hazırlayan : HİKMET KAYA.
TEREYAĞI TEREYAĞINDA KALİTE KONTROL  
3. MALZEME PROFİLLERİ (MATERIALS PROFILES)
Fe-Fe3C diyagramı Ötektik L →  + Fe3C Peritektik L +  →  L 1493ºC 
SİSMİK -ELEKTRİK YÖNTEMLER DERSİ- SİSMİK BÖLÜMÜ
HADDELEME GÜCÜNÜN HESAPLANMASI:
ISIL İŞLEMLER.
KAYNAK HATALARI hacı aslan
METALOGRAFİ Metallerin ve Alaşımların Mikroyapıları.
MÜHENDİSLİK MALZEMELERİ
MÜHENDİSLİK MALZEMELERİ (SERTLEŞTİRME YÖNTEMLERİ)
Jominy (Uçtan Su Verme) Deneyi
MÜHENDİSLİK MALZEMELERİ
Kristal kusurları Hiç bir kristal mükemmel değil;
SERTLİK ÖLÇME YÖNTEMLERİ
VICKERS SERTLIK ÖLÇME YÖNTEMI Ölçme ve değerlendirme kriterleri aynı Brinell yöntemindeki gibidir. Bu yöntemi Brinelden ayıran özellik kullanılan ölçme.
SERTLEŞTİRME VE TAVLAMALAR
MALZEME BİLGİSİ Doç.Dr. Gökhan Gökçe 4. METALLER.
Çeliklere Uygulanan Isıl İşlemler
CERRAHİ İPLİKLER VE İĞNELER
MUKAVEMET ARTIRICI İŞLEMLER
Isıl İşlemler.
T A Ş L A M A OTOMOTİV MAKİNE İŞLEMLERİ Yrd. Doç. Dr. Can ÇINAR
ÇİFT SİLİNDİR İNFİLTROMETRE İLE İNFİLTRASYON TESTLERİ
TS 802 Haziran 2009 BETON TASARIMI KARIŞIM HESAPLARI
Hazırlayan : Prof. Dr. Halil ARIK ANKARA
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
BÖLÜM 4: Hidroloji (Sızma) / Prof. Dr. Osman YILDIZ (Kırıkkale Üniversitesi)
Sunum transkripti:

JOMINY DENEYİ

Çeliğin Sertleşme Davranışı • Sertlik: Çelik içindeki C yüzdesine bağlı olarak sertlik değeridir. •Sertleşme Derinliği (sertleşme kabiliyeti): Sertleşme derinliği, sertliğin öngörülen bir değeri aştığı sınır tabakası kalınlığı olarak tanımlanır. Alaşım elementi cinsi ve miktarıyla belirlenir. Çeliğin sertleşme davranışı DIN 50191’de verilen Jominy (Alından Su Verme )Deneyi ile saptanır.

Sertleştirme sonucunda %0,8 C’li çeliğin (ötektoid çelik) sertliği yaklaşık 67 HRC’dir. Çeliğin sertleşme derinliği, genellikle %50 martenzit içeren, yani böyle bir içyapının sertliğine sahip olan noktanın, alın yüzeyinden uzaklığıdır. Alaşımsız çeliklerin kritik soğuma hızının yüksek olması nedeniyle, sertleşme derinliği azdır. Yani elde edilebilen martenzitik tabakanın kalınlığı yaklaşık 5 mm’dir. Bu nedenle, bu tür çeliklere sığ sertleşme çelikleri adı verilir. Alaşımlı çeliklerde ise, elde edilebilen martenzitik tabakanın kalınlığı yaklaşık 12 mm’dir.

Kritik soğuma hızı, TTT diyagramlarında burun noktasını kesmeden sağlanan en düşük soğuma hızıdır. Su verme işleminde uygulanan soğuma hızı, kritik soğuma hızından daha yüksek ise, perlit ve beynit dönüşümü tamamen engellenerek martenzit yapısı oluşur. Eğer soğuma hızı kritik soğuma hızından daha düşük ise en son yapıdaki martenzitin miktarı ve buna bağlı olarak ta sertlik azalır. Bu yolla sağlanan sertlik değeri çeliğin karbon miktarına bağlıdır.

Sertleşebilirlik, su verme işlemi sonucu yapısı martensite dönüşen bir çeliğin sertleşme kabiliyeti olarak tanımlanır. Sertleşebilirlik deneyleri su verme ile elde edilen sertlik derinliğinin ölçülmesi esasına dayanır. Bu derinlik, martensit miktarının yüzeyden itibaren yarıya indiği ya da % 50 martensit ve beynitin var olduğu mesafe olarak ifade edilmektedir.

Sertleşebilirlik ile sertlik farklı kavramlardır Sertleşebilirlik ile sertlik farklı kavramlardır. Maksimum sertlik çeliğin karbon miktarına bağlıdır. Sertleşebilirlik ise çeliğin kimyasal bileşimine ( karbon ve alaşım elementleri ) ve su verme sırasında ostenit tane boyutuna bağlıdır.

Sertleşebilirlik deneyi 2 çeşittir: Grossman sertleşebilirlik deneyi Diğeri ise Jominy uçtan su verme deneyidir. Çeliklerin sertleşebilirliklerinin ölçülmesinde Jominy uçtan su verme deneyi Grossman deneyine göre daha pratik ve daha az maliyetlidir.

Şekilde 4140, 4340, 1040, 1020 ve 1060 çeliklerinin tipik Jominy eğrileri verilmektedir. Burada alaşımlı çeliklerin sertleşebilme kabiliyetlerinin daha yüksek olduğu görülmektedir. Yüksek sertlik martensit yapısında, daha düşük sertlik ise beynit ve ferrit + perlit yapısında sağlanmaktadır

Sertleşebilirliğe Etki Eden Faktörler Alaşım elementlerinden sertleşebilirliği en fazla C, B, Cr, Mn, Mo, Si ve Ni etkiler. Karbon, martensitin sertliğini kontrol eder. Çelikte % 0,6’ya kadar C içeriği arttığında çeliğin sertliği artar. Daha yüksek seviyelerdeki karbon içeriği olduğu durumda, ostenitten martensite dönüşüm tamamlanamaz. Bu da yapıda kalıntı ostenit bulunmasına sebep olur. Bu durumda yapıda martensitin yanında ostenit bulunacağından sertlik daha düşük seviyelerde kalır. Karbon miktarının yüksek olması malzemenin daha gevrek bir davranış göstermesine neden olur ve daha sonra yapılacak olan işlemlerde sorunlar yaratabilir. Bu yüzden % 0,4 C’a kadar olan çeliklerde sertleşebilirlik kontrolü daha kolaydır.

Bor, % 0,002 - 0,003 oranında çeliğe ilave edildiğinde % 0,5 Mo ilavesindeki etkiyi gösterir. Bor düşük karbonlu çeliklere ilave edildiğinde sertleşebilirlikte en büyük etkiyi gösterir. Cr, Mo, Mn, Si, Ni ilaveleri çelikte ostenitten ferrit ve perlite dönüşümü geciktirir. Bu elementler ara yüzeyde tane büyümesini engelleyerek sertleşebilirliği arttırırlar.

DENEYİN YAPILIŞI: Jominy deneyi, günümüzde en yaygın olarak kullanılan sertleşebilirlik deneyidir. Bu yöntemde numune olarak 1 inç (25,4 mm) çapında ve 4 inç (101,6 mm) uzunluğunda silindirik bir çelik çubuk kullanılır. Numune 1/2 inç uzunluğundaki su hortumundan 2 inç mesafede olacak şekilde yatay bir yüzey üzerine oturtulur. Suyun tazyik yüksekliği 2,5 inç ve su sıcaklığı 24-28 ° C dir. Deney numunesi önce normalize edilir, verilen boyutlarda işlendikten sonra bileşimine göre uygun su verme sıcaklığına (ostenitleme sıcaklığı) kadar ısıtılır ve bu sıcaklıkta en az 20 dakika tutulur. Bu sürenin sonunda fırından çıkarılan numune süratli bir şekilde deney düzeneğine yerleştirilir ve bir ucundan su püskürtmek suretiyle en az 10 dakika soğutulur.

Numune, gerekli su verme sıcaklığına çıkarılırken ısıtma hızı düşük olmalı, ostenitleme sıcaklığına yaklaşık 30-40 dk.’da ulaşılmalıdır.

Soğuma hızı, çelik çubuk boyunca su verilmiş uçtan itibaren kademeli olarak azalır. Çubuk soğutulduktan sonra eksenine paralel ve yüzeyden itibaren 0,015 inç (0,381 mm) derinliğinde talaş kaldırma işlemi yapılarak düzgün bir yüzey elde edilir. Daha sonra bu yüzey kullanılarak, su verilmiş uçtan itibaren 1/16 inç (1,58 mm) aralıklarla çubuğun sertliği Rockwell C skalasında ölçülür. Su verilmiş uçtan itibaren mesafe ve elde edilen sertlik değerleri bir grafik üzerinde belirtilerek, Jominy eğrileri elde edilir .

Örnek: Silindirik parçanın merkezindeki sertlik tahmin edilecektir. İşlem adımları 1) Parça çapından hareketle istenilen derinlikteki soğuma hızını belirlenmesi (Şekil a) 2) Soğuma hızı (ya da Jominy mesafesi) değerinden hareketle söz konusu derinlikteki sertliğin belirlenmesi (Şekil b) 3) Bulunan bu değer kullanılan soğutma ortamı için çelik parçanın merkezindeki sertliktir (Şekil c)

Sertleşebilirlik

ÖDEV

1) 1020, 1040 ve 4140 çeliğinin elde edilen mesafe-sertlik verilerine göre sertleşebilirlik eğrisini çiziniz ve eğriler arasındaki farkını açıklayıp. Her bir mesafede oluşabilecek mikro yapıları belirtiniz. 2) Yüksek alaşımlı çeliklere neden Jominy deneyi uygulanmamaktadır? Açıklayınız. Yüzeyden itibaren mesafe (mm) 1020 çeliği (HRC) 1040 çeliği 4140 çeliği 49 57 3 34 46 56 6 22 30 55 9 20 27 53 12 19 26 52 15 17 25 50 18 16 23 48