Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.

Slides:



Advertisements
Benzer bir sunumlar
Bağımlı Kukla Değişkenler
Advertisements

GÖRÜNÜRDE İLİŞKİSİZ REGRESYON MODELLERİ
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
İyi Bir Modelin Özellikleri
ÇOKLU DOĞRUSAL BAĞLANTI
Otokorelasyon ut = r ut-1 + et -1 < r < +1 Yt = a + bXt + ut 
OTOKORELASYON.
Otokorelasyon Y t =  +  X t + u t  u t =  u t-1 +  t -1 <  < +1 Birinci dereceden Otokorelasyon Cov (u t,u s )  0  Birinci Dereceden Otoregressif.
OTOKORELASYON.
ORTAK FAKTÖR TESTİ VE DİNAMİK MODEL SPESİFİKASYONU
Normal Dağılım EKK tahmincilerinin ihtimal dağılımları u i ’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.  tahminleri için uygulanan testlerin.
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X 1.
Farklı Varyans Var(u i |X i ) = Var(u i ) = E(u i 2 ) =  2  Eşit Varyans Y X.
İŞLE 524 – İŞLE 531 Yönetim Muhasebesi
Önem Testleri. Örnekleme yoluyla sağlanan bilgiden hareketle; Kliniklerde hasta hayvanlara uygulanan yeni bir tedavi yönteminin eskisine kıyasla bir farklılık.
İKİDEN ÇOK (K) ÖRNEKLEM TESTLERİ. BAĞIMSIZ GRUPLARA İLİŞKİN HİPOTEZ TESTLERİ.
Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri Mann-Whitney U testi Wilcoxon İşaretli Sıra testi BBY252 Araştırma.
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
OTOKORELASYON.
OLASILIK ve İSTATİSTİK
Çoklu Doğrusal Bağlantı X3X3 X2X2 r X 2 X 3 = 1 Tam Çoklu Doğrusal Bağlantı.
Istatistik I Fırat Emir.
PANEL VERİ ANALİZİ.
HİPOTEZ TESTLERİ VE Kİ-KARE ANALİZİ
BİLİMSEL ARAŞTIRMA YÖNTEMLERİ ÜNİTE 3
T- Testİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ
Basit ve Kısmi Korelasyon Dr. Emine Cabı
Hatalarda Normal Dağılım
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Kİ-KARE DAĞILIMI VE TESTİ
1. Bernoulli Dağılımı Bernoulli dağılımı rassal bir deneyin sadece iyi- kötü, olumlu-olumsuz, başarılı-başarısız, kusurlu-kusursuz gibi sadece iki sonucu.
İSTATİSTİK II Hipotez Testleri - 2.
Yapay Sinir Ağı Modeli (öğretmenli öğrenme) Çok Katmanlı Algılayıcı
Kesikli Olasılık Dağılımları
MODEL YETERSİZLİKLERİNİ DÜZELTMEK İÇİN DÖNÜŞÜMLER VE AĞIRLIKLANDIRMA
Hatalarda Normal Dağılım
Ünite 9: Korelasyon Öğr. Elemanı: Dr. M. Cumhur AKBULUT.
Öğr. Gör. Zeynep KÖSE Hasan Kalyoncu Üniversitesi İktisat Bölümü
Bağımlı Kukla Değişkenler
Bağımlı Kukla Değişkenler
KORELASYON VE DOGRUSAL REGRESYON
Bağımlı (Eşleştirilmiş) Örneklerde t-Testi (Paried Sample t test) Menüsü Bağımlı örnekler için deney tasarımı iki farklı biçimde karşımıza çıkmaktadır.
PARAMETRİK HİPOTEZ TESTLERİ
Tipik Performans Testlerinde Güvenirlik
BENZETİM Prof.Dr.Berna Dengiz 13. Ders Çıktı Analizi
ÖDE5024 DAVRANIŞ BİLİMLERİNDE İSTATİSTİK Yüksek Lisans
NİŞANTAŞI ÜNİVERSİTESİ
SPSS’TE ÇAPRAZ TABLO Çapraz tablo temel olarak, iki kategorik değişken arasındaki ilişkiyi analiz etmek için kullanılır. Örneğin cinsiyet ve oy verilen.
Tüketim Gelir
ÖDE5024 DAVRANIŞ BİLİMLERİNDE İSTATİSTİK Yüksek Lisans
SPSS’TE ÇAPRAZ TABLO Çapraz tablo temel olarak, iki kategorik değişken arasındaki ilişkiyi analiz etmek için kullanılır. Örneğin cinsiyet ve oy verilen.
İSTATİSTİK II Varyans Analizi.
İletişim Fakültesi Bilişim A.B.D.
NİŞANTAŞI ÜNİVERSİTESİ
Bağımlı Kukla Değişkenler
8.Hafta ANCOVA Kovaryans Analizi
İyi Bir Modelin Özellikleri
…ÇOKLU REGRESYON MODELİ…
NİŞANTAŞI ÜNİVERSİTESİ
Veri ve Türleri Araştırma amacına uygun gözlenen ve kaydedilen değişken ya da değişkenlere veri denir. Olgusal Veriler Yargısal Veriler.
Bağımlı Kukla Değişkenler
Eşleştirilmiş/Bağımlı Örneklem t Testi
Ölçmede Hata Kavramı ve Hata Türleri
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X.
Dönem 2 Biyoistatistik Uygulama
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları ui’nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin.
BİLİMSEL ARAŞTIRMA YÖNTEMLERİ
Dağıtılmış Gecikme Modeli
Bilimsel araştırma türleri (Deneysel Desenler)
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
Sunum transkripti:

Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2  Eşit Varyans Y X

Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = si2  Farklı Varyans Hata Zaman

EKKY’nin varsayımlarından biri anakütle regresyon fonksiyonu ui lerin eşit varyanslı olmasıdır. Her hata terimi varyansı bağımsız değişkenlerin verilen değerlerine göre s2 ye eşit aynı (sabit) bir değerdir. Bu nedenle eşit varyansa sabit varyans da denir. i=1,2,3,…N =Eşit varyans =Farklı varyans

Farklı Varyans ile Karşılaşılan Durumlar X değişkeninin değeri arttıkça Yi nin şartlı varyansı sabit değil veya eşit değildir. Farklı Varyans ile Karşılaşılan Durumlar Kesit Verilerinde. Kar dağıtım modellerinde. Sektör modellerinde. Ücret modellerinde. Deneme - Yanılma modellerinde.

Farklı Varyansın Ortaya Çıkardığı Sonuçlar Katsayı tahmincilerine etkisi.(EKKY uygulandığında farklı varyans varsa t ve F testleri doğru olmayan anlamsız katsayı tahminleri verecektir. Standart hatalar olduğundan daha büyük çıkacaktır, elde edilen güven aralıklarına güvenilemeyecektir. Tahminciler doğrusal ve sapmasızdırlar , ancak etkin ve eniyi tahminci olma yani minimum varyanslı olma özelliğini kaybederler. EKKY varyans formülleri kullanılamayacaktır.

Parametre Tahmincilerinin Özellikleri Sapmasızlık Anakütle regresyon modeli Sapma nedeni ile i nin beklenen değeri sıfırdan farklı ise.

Parametre Tahmincilerinin Özellikleri Sapmasızlık

Parametre Tahmincilerinin Özellikleri Etkinlik Modelde sabit varyans varsayımının geçerli olmaması durumunda parametre tahmincileri 0* ve 1* olsun. 0* ve 1* ın varyanslarınn doğrusal sapmasız tahmin yöntemi ile belirlenmesi: Doğrusallık şartı gereği:

Etkinlik in beklenen değeri ve varyansı:

Tutarlılık ’nin tutarlı tahmincisidir.

Tutarlılık

Farklı Varyansın Belirlenmesi Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. White testi ile. Lagrange çarpanları testi ile

Grafik Yöntem

Grafik Yöntem

Grafik Yöntem

Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r  0 ttab =? 2.Aşama a = ? s.d.=? 3.Aşama 4.Aşama thes > ttab H0 hipotezi reddedilebilir

Sıra Korelasyonu Testi X e Xs es di2 di 75 88 95 125 115 127 165 172 183 225 80 100 120 140 160 180 200 220 240 260 7.0545 4.7091 -3.6364 11.0182 -14.327 -17.672 4.9818 -3.3636 -7.7091 18.9455 1 2 3 4 5 6 7 8 9 10 5 -4 16 3 -1 1 2 1 1 7 -3 9 8 -3 9 9 -3 9 4 3 9 1 7 49 6 3 9 10 Sdi2=112 Mutlak değerli olarak bulundukları yer itibariyle küçükten büyüğe sıra numarası verilir d=X-e

Sıra Korelasyonu Testi = 0.3212 1.Aşama H0: r = 0 H1: r  0 ttab = 2.306 2.Aşama a = 0.05 s.d.= 8 3.Aşama = 0.9593 4.Aşama thes < ttab H0 hipotezi reddedilemez.

Goldfeld-Quandt Testi Büyük örneklere uygulanan bir F testidir. Bu test s2i nin farklı varyansının bağımsız değişkenlerden biri ile pozitif ilişkili olduğunu varsayar. s2i Xi ile pozitif (aynı yönde) ilişkilidir ve s2i farklı varyansı X’in karesi ile orantılıdır. Yani Xi değerleri arttıkça s2i değeri de artmaktadır.

Goldfeld-Quandt Testi Y = b1 + b2 X2 + b3 X3+ ... + bk Xk + u Y X2s X3 ... Xk I.Alt Örnek n1 YI = b11 + b21 X2 + b31 X3+ ... + bk1 Xk + u Se12=? Çıkarılan Gözlemler n(1/6) < c < n(1/3) II.Alt Örnek n2 YII = b12 + b22 X2 + b32 X3+ ... + bk2 Xk + u Se22=?

Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = ? Ftab =? 3.Aşama X bağımsız değişkeninin değerleri küçükyen büyüğe doğru ilgili Y bağımlı değişkeninin değerleri de taşınarak sıralanır. Ortadan c kadar gözlem çıkarılır. 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

Yıl Tasarruf Gelir 1 264 8777 2 105 9210 3 90 9954 4 131 10508 5 122 10979 6 107 11912 7 406 12747 8 503 13499 9 431 14269 10 588 15522 11 898 16730 12 950 17663 13 779 18575 14 819 19635 15 1222 21163 16 1702 22880 17 1578 24127

Gelir bağımsız değişkenine göre tasarrufu da sıralıyoruz. 1654 Gelir 25604 1400 26500 1829 27670 2200 28300 2017 27430 2105 29560 1600 28150 2250 32100 2420 32500 2570 35250 1720 33500 1900 36000 2100 36200 2300 38200 Gelir bağımsız değişkenine göre tasarrufu da sıralıyoruz.

Ortadan 31/4=8 veya 9 gözlem çıkarılacak. İki alt grup oluşturuldu. Tasarrfuf Gelir n2 1 264 8777 1829 27670 2 105 9210 1600 28150 3 90 9954 2200 28300 4 131 10508 2105 29560 5 122 10979 2250 32100 6 107 11912 2420 32500 7 406 12747 1720 33500 8 503 13499 2570 35250 9 431 14269 1900 36000 10 588 15522 2100 36200 11 898 16730 2300 38200 Gelire göre sırandı. Ortadan 31/4=8 veya 9 gözlem çıkarılacak. İki alt grup oluşturuldu.

(189.4) (0.015) (0.02) (709.8)

f1=f2=(n-c-2k)/2=9 sd de Ftab=3.18

Goldfeld-Quandt Test lnMaas = b1 + b2 Yıl + b3 Yıl2 Dependent Variable: lnMaas Included observations: 222 Variable Coefficient Std. Error t-Statistic Prob. C 3.809365 0.041338 92.15104 0.0000 Yıl 0.043853 0.004829 9.081645 0.0000 Yıl2 -0.000627 0.000121 -5.190657 0.0000 R-squared 0.536179 Mean dependent var 4.325410 Adjusted R-squared 0.531943 S.D. dependent var 0.302511 S.E. of regression 0.206962 Akaike info criterion -0.299140 Sum squared resid 9.380504 Schwarz criterion -0.253158 Log likelihood 36.20452 F-statistic 126.5823 Durbin-Watson stat 1.618981 Prob(F-statistic) 0.000000

Goldfeld-Quandt Test 1.alt örnek sonuçları: Dependent Variable: lnmaas Sample: 1 75 Included observations: 75 Variable Coefficient Std. Error t-Statistic Prob. C 3.954106 0.059538 66.41324 0.0000 Yıl -0.021930 0.021019 -1.043349 0.3003 Yıl2 0.004375 0.001600 2.733929 0.0079 R-squared 0.465625 Mean dependent var 4.031098 Adjusted R-squared 0.450781 S.D. dependent var 0.167536 S.E. of regression 0.124160 Akaike info criterion -1.295318 Sum squared resid 1.109926 Schwarz criterion -1.202619 Log likelihood 51.57443 F-statistic 31.36845 Durbin-Watson stat 1.807774 Prob(F-statistic) 0.000000

Goldfeld-Quandt Test 2.Altörnek Sonuçları: Dependent Variable: lnmaas Sample: 148 222 Included observations: 75 Variable Coefficient Std. Error t-Statistic Prob. C 4.007507 0.976346 4.104598 0.0001 Yıl 0.019928 0.060603 0.328823 0.7432 Yıl2 -0.000102 0.000920 -0.110443 0.9124 R-squared 0.078625 Mean dependent var 4.513929 Adjusted R-squared 0.053031 S.D. dependent var 0.231175 S.E. of regression 0.224962 Akaike info criterion -0.106594 Sum squared resid 3.643762 Schwarz criterion -0.013895 Log likelihood 6.997288 F-statistic 3.072027 Durbin-Watson stat 1.684803 Prob(F-statistic) 0.052446

Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = 0.05 1.43<Ftab<1.53 = 3.2830 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

White Testi Y = b1 + b2 X2 + b3 X3+ u White Testi için yardımcı regresyon: u2 = a1 + a2 X2 + a3 X3+ a4 X22 + a5 X32 + a6 X2X3 + v Ry2 = ? White Testi Aşamaları: 1.Aşama H0: a2 = a3 = a4 = a5 = a6=0 H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama s.d.= k-1 c2tab=? a = ? 3.Aşama W= n.Ry2 = ? W > c2tab H0 hipotezi reddedilebilir 4.Aşama

White Testi lnMaaş = 3.8094 + 0.0439yıl - 0.0006 yıl2 White Testi için yardımcı regresyon: e2= -0.0018 + 0.0002 Yıl + 0.0007 Yıl2- 0.00003 Yıl3 + 0.0000004Yıl4 Ry2 = 0.0901 1.Aşama H0: a2 = a3 = a4 = a5=0 ; H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama a = 0.05 s.d.=5-1=4 c2tab=9.4877 3.Aşama W= n.Ry2 = 222(0.0901)= 20.0022 4.Aşama W > c2tab H0 hipotezi reddedilebilir

Lagrange Çarpanları(LM) Testi Y = b1 + b2 X2 + b3 X3+ u LM testi için yardımcı regresyon: Ry2 = ? LM Testi Aşamaları: 1.Aşama H0: b = 0 H1 : b0 2.Aşama s.d.= 1 c2tab=? a = ? 3.Aşama LM= n.Ry2 = ? LM > c2tab H0 hipotezi reddedilebilir 4.Aşama

Lagrange Çarpanları(LM) Testi lnmaaş = 3.8094 + 0.0439yıl - 0.0006 yıl2 LM Testi için yardımcı regresyon: e2 = -0.2736 + 0.0730 (lnmaas-tah)2 Ry2 = 0.0537 1.Aşama H0: b = 0 H1 : b0 2.Aşama a = 0.05 s.d.=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 222(0.0537)= 11.9214 4.Aşama LM > c2tab H0 hipotezi reddedilebilir

UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile Sayısı Y X u 1 2.2 2.8 -0.75464 17 1.5 2 -1.25412 3 3.5 -0.1301 18 5.8 7.2 1.74247 4.1 13.5 -1.53666 19 8.2 18.1 1.41032 4 -0.80818 20 4.3 6.2 0.49313 5 4.2 5.9 0.46833 21 9.4 16.1 3.11164 6 6.3 15.3 0.21216 22 5.1 25.2 -3.46933 7 4.6 9.7 -0.08417 23 2.4 -1.90818 8 8.8 26.4 -0.07012 24 8.1 13.4 2.48841 9 7.3 18.2 0.48526 25 4.9 5.6 1.24352 10 4.4 6.7 0.4678 26 -0.30556 11 11.3 1.61478 27 0.14142 12 4.7 0.06911 28 1.9 -1.2301 13 6.8 26.3 -2.04505 29 2.6 12.4 -2.76094 14 22.3 -0.64243 30 3.9 0.56938 15 3.1 6.1 -0.68181 31 12.9 1.51373 16 3.2 -0.6549 32 11.2 26.5 2.30482

UYGULAMA: Yi = 0 + 1Xi + i modeli için sabit varyans varsayımının geçerli olup olmadığını Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile.

Grafik Yöntem

Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r  0 ttab =? 2.Aşama a = 0.05 s.d.=? 3.Aşama 4.Aşama thes > ttab H0 hipotezi reddedilebilir

Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r  0 ttab = 2.042 2.Aşama a = 0.05 s.d.= 30 = 1.9454 4.Aşama thes < ttab H0 hipotezi reddedilemez.

Goldfeld-Quandt Testi c = 32 / 5 = 6.4 6 gözlem atılacak. (14.-19. gözlemler) 13 gözlemden oluşan iki grup için modeller 1.-13. gözlemler için Yi = 0.5096 + 0.6078Xi 20.-32. gözlemler için Yi = 3.8153 + 0.1723Xi

Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = 0.05 Ftab =2.82 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

White Testi White Testi için yardımcı regresyon: e2= -0.6909 + 0.3498X – 0.0058X2 Ry2 = 0.2296 1.Aşama H0: a2 = a3 = 0 ; H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama a = 0.05 s.d.=3-1=2 c2tab=5.99 3.Aşama W= n.Ry2 = 32(0.2296) = 7.3472 4.Aşama W > c2tab H0 hipotezi reddedilebilir

Lagrange Çarpanları(LM) Testi LM Testi için yardımcı regresyon: Ry2 = 0.201 1.Aşama H0: b = 0 H1 : b0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.201) = 6.432 4.Aşama LM > c2tab H0 hipotezi reddedilebilir

FARKLI VARYANSI ORTADAN KALDIRMA YOLLARI Farklı varyans durumunda EKKY tahmincileri etkinlik özelliklerini kaybettiklerinden güvenilir değildirler. Bu sebeple farklı varyans ortadan kaldırılmadan EKKY uygulanmamalıdır. Yi lerin (veya ui lerin) farklı varyansları s2i nin bilinip bilinmemesine göre farklı varyansı kaldıran iki yol vardır: nin BİLİNMESİ HALİ nin BİLİNMEMESİ HALİ

Genelleştirilmiş EKKY(GEKKY) nin BİLİNMESİ HALİ Genelleştirilmiş EKKY(GEKKY) Yi = b1 + b2 Xi + ui

Genelleştirilmiş EKKY(GEKKY) Sabit terimi yoktur. İki tane bağımsız değişken vardır.

Genelleştirilmiş EKKY(GEKKY)

Genelleştirilmiş EKKY(GEKKY)

EKKY ve GEKKY Arasındaki Fark min GEKKY min

nin BİLİNMEMESİ HALİ 1.HAL: LOGARİTMİK DÖNÜŞÜMLER 2 .HAL:

nin BİLİNMEMESİ HALİ 3 .HAL:

nin BİLİNMEMESİ HALİ 4 .HAL: bölünür

nin BİLİNMEMESİ HALİ 5 .HAL:

UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile Sayısı Y X u 1 2.2 2.8 -0.75464 17 1.5 2 -1.25412 3 3.5 -0.1301 18 5.8 7.2 1.74247 4.1 13.5 -1.53666 19 8.2 18.1 1.41032 4 -0.80818 20 4.3 6.2 0.49313 5 4.2 5.9 0.46833 21 9.4 16.1 3.11164 6 6.3 15.3 0.21216 22 5.1 25.2 -3.46933 7 4.6 9.7 -0.08417 23 2.4 -1.90818 8 8.8 26.4 -0.07012 24 8.1 13.4 2.48841 9 7.3 18.2 0.48526 25 4.9 5.6 1.24352 10 4.4 6.7 0.4678 26 -0.30556 11 11.3 1.61478 27 0.14142 12 4.7 0.06911 28 1.9 -1.2301 13 6.8 26.3 -2.04505 29 2.6 12.4 -2.76094 14 22.3 -0.64243 30 3.9 0.56938 15 3.1 6.1 -0.68181 31 12.9 1.51373 16 3.2 -0.6549 32 11.2 26.5 2.30482 54

1.HAL: LOGARİTMİK DÖNÜŞÜMLER 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0178) = 0.5696 4.Aşama LM < c2tab H0 hipotezi reddedilemez.

2 .HAL: 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0509) = 1.6288 4.Aşama LM < c2tab H0 hipotezi reddedilemez.

3 .HAL: 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.2365) = 7.568 4.Aşama LM > c2tab H0 hipotezi reddedilebilir.

5 .HAL: 1.Aşama H0: b = 0 H1: b  0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0290) = 0.928 4.Aşama LM < c2tab H0 hipotezi reddedilemez.