Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik

Slides:



Advertisements
Benzer bir sunumlar
Çatallanmalar (Bifurcations)
Advertisements

Projemizin İçeriği: Anahtarlanmış Doğrusal Sistemler
POLİNOMLARIN KÖKLERİNİ BELİRLEMEYE İLİŞKİN YÖNTEMLER VE BU YÖNTEMLERİN SİSTEM KARARLILIĞIYLA OLAN İLİŞKİSİ Hazırlayan:Cihan Soylu.
Giriş Dikkat Altsistemi Yönlendirme Altsistemi Kısa Süreli Bellek Uzun Süreli Bellek Kontrol Birimi Kontrol Birimi F1 F2 ART nasıl çalışıyor? Mete Balcı,
Hiçbir kimyasal ayırma yöntemi ile kendinden daha basit maddelere ayrıştırılamayan saf maddelere element denir.
Giriş, Temel Kavramlar, Yapı Sistemleri
Giriş, Temel Kavramlar, Yapı Sistemleri
2K-28>0  K>14 ÖDEV 4 ÇÖZÜMLERİ
Geçen hafta anlatılanlar Değişmez küme Değişmez kümelerin kararlılığı Bildiğimiz diğer kararlılık tanımları ve değişmez kümenin kararlılığı ile ilgileri.
Dinamik sistemin kararlılığını incelemenin kolay bir yolu var mı? niye böyle bir soru sorduk? Teorem 1: (ayrık zaman sisteminin sabit noktasının kararlılığı.
Sinir Hücresi Nasıl Fark Edilmiş? eCell.jpg/512px-PurkinjeCell.jpg Ramon y Cajal ( )
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
BİYOMEDİKAL MÜHENDİSLİĞİNDE İLERİ KONULAR Neslihan Serap Şengör Oda no: 1107 Tel:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Bir örnek : Sarkaç. Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney,
Bazı Sorular Gerçekten de belirlenen ağırlıklar ile istenilen kararlı denge noktalarına erişmemizi sağlayacak dinamik sistem yaratıldı mı? Eğer evet ise,
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Hopfield Ağı Ayrık zamanSürekli zaman Denge noktasının kararlılığı Lyapunov Anlamında kararlılık Lineer olmayan sistemin kararlılığı Tam Kararlılık Dinamik.
Bu durumda lineer sistemin çözümleri neler olabilir? Tüm bu durum portrelerinde ortak bir şey var, ne? S. Haykin, “Neural Networks- A Comprehensive Foundation”2.
Uyarlanabilir Yankılaşım Teorisi (Adaptive Resonance Theory- Grossberg ) A crucial metatheoretical.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Kaos’a varmanın yolları DüzenKaos Nasıl? Umulmadık yapısal değişiklikler ile Bu nasıl oluşabilir? Ardışıl bir dizi dallanma ile, peryod katlanmasına yol.
Tanım: (Lyapunov anlamında kararlılık)
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ Hesaplamalı Sinirbilim Modeller farklı zamansal ve konumsal ölçeklerde süreçleri ele.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Düğüm-Eyer dallanması için ele alınan ön-örneğe yüksek mertebeden terimler eklense davranışı yapısal olarak değişir mi? Bu soru neden önemli Lemma sistemi.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Müştak Erhan Yalçın oda no:2304.
F(.) y[n+1] Giriş Vektörü Giriş-Çıkış Eşleme Fonksiyonu Çıkış Mahmut Meral, Lisans Bitirme Ödevi, 2003 Giriş – Çıkış Modeline göre Dinamik Sistem Tanıma.
Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı Kullanılan Hücre Modeli: McCulloch-Pitts Eksik birşey var!! Örüntüler: 1. Aşama: Belleğin Oluşturulması.
Izhikevich Sinir Hücresinin davranışı Deneysel sonuçModelden elde edilen sonuç E.M. Izhikevich, “Dynamical Systems in Neuroscience”, MIT Press, 2007.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Sinir Hücresi Nasıl Fark Edilmiş? eCell.jpg/512px-PurkinjeCell.jpg Ramon y Cajal ( )
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Devre ve Sistem Analizi
x* denge noktası olmak üzere x* sabit nokta olmak üzere
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Devre ve Sistem Analizi
Dinamik Sistem Dinamik sistem: (T, X, φt ) φt : X X a1) φ0=I
Doğrusal Olmayan Devreler, Sistemler ve Kaos
ACT-R Adaptive Control of Thought-Rational
Durum portresi Durum portresinde değişiklik olur mu, nasıl olur?
h homeomorfizm h homeomorfizm h 1-e-1 ve üstüne h sürekli h
Poincare Dönüşümü
Özdeğerler, Sıfırlar ve Kutuplar
Dinamik Yapay Sinir Ağı Modelleri
Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar
Dinamik Sistem T=R sürekli zaman Dinamik sistem: (T, X, φt ) T zaman
Sinir Hücresi Nasıl Fark Edilmiş?
İlk olarak geçen hafta farklı a değerleri için incelediğiniz lineer sisteme bakalım: MATLAB ile elde ettiğiniz sonuçları analitik ifade ile elde edilen.
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
ART nasıl çalışıyor? Giriş Dikkat Altsistemi Yönlendirme Altsistemi F2
Geçen hafta ne yapmıştık
Kaos için bir yol: çek katla
Geçen haftaki tanımlar:
Teorem 2: Lineer zamanla değişmeyen sistemi
Sinir Hücresi McCulloch-Pitts x1 w1 x2 w2 v y wm xm wm+1 1 '
Hopfield Ağı Ayrık zaman Sürekli zaman
Lineer olmayan dinamik bir sistemin davranışını
Hatırlatma Yörünge: Or(xo)
Izhikevich Sinir Hücresi Modeli Hatırlatma
Düğüm-Eyer Dallanması
S. Haykin, “Neural Networks- A Comprehensive Foundation”,
Bazı Doğrusal Olmayan Sistemler
Uzay ve Uzay Çalışmaları.
Tbastırma=5ms (Başlangıçta I1’ in süresi)
6. Frekans Tanım Bölgesi Analizi
Sunum transkripti:

Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik Hatırlatma Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik eşdeğerliliğin ortadan kalktığı durumlar var mı, varsa nasıl buluruz? Dallanmalar (Bifurcation) ve dallanma diyagramları Sürekli zaman Ayrık zaman Dallanma: Bir parametrenin değişimi ile topolojik olarak eşdeğer olmayan durum portresinin oluşumuna “dallanma” denir. Topolojik eşdeğerlik bozulduğunda durum portresinde neler değişebilir? F.C.Hoppensteadt, E.M. Izhikevich, “Weakly Connected Neural networks”, Springer, 1997.

bağlı olarak durum uzayının temsili ile katmanlaştırılması Dallanma Diyagramı: Dinamik sistemin parametre uzayının, her bir katmanda topolojik eşdeğerliğe bağlı olarak durum uzayının temsili ile katmanlaştırılması “dallanma diyagramı “ ‘nı verir. Bir örnek S. Sastry, “Nonlinear Systems”, Springer, 1999 E.M. Izhikevich, “Dynamical Systems in Neuroscience”, MIT Press, 2007

Denge noktalarının sayısı değişiyor acaba kararlılıkları ne oluyor? denge noktası kararlı civarında denge noktası kararsız civarında denge noktası kararlı civarında denge noktası kararlı Dallanma diyagramı S. Sastry, “Nonlinear Systems”, Springer, 1999.

Bir örnek Düğüm-Eyer Dallanması Kararlı odak Eyer S. Sastry, “Nonlinear Systems”, Springer, 1999.

Bir örnek daha Küçük için Denge noktası bir tane ve (0,0) kararlı odak Denge noktası kararsız odak Yeterince büyük için Andronov-Hopf Dallanması Y.A. Kuznetsov, “Elements of Applied Bifurcation Theory”, Springer, 2004.

Yerel (Local) ve Genel (Global) Dallanmalar İncelediğimiz dallanmalar ile denge noktalarının sayısı ve yeri değişti, denge noktasından limit çevrime geçiş oldu ancak hepsi bir denge noktası civarındaki topolojik değişiklikler idi ve denge noktası civarına bakarak oluşan değişiklikler belirlenebildi. Bu tür dallanmalar yerel dallanmalar olarak adlandırılıyor. Ancak denge noktası civarında olup bitenlere bakarak tüm durum uzayındaki değişimler için fikir edinemediğimiz de genel dallanma ile topolojik değişiklikleri belirleyebiliriz.

Aynı noktaya dönen yörünge (Homoclinic Orbit) İki Özel Yörünge * Aynı noktaya dönen yörünge (Homoclinic Orbit) ‘de başlayan bir yörüngesi aşağıdaki koşulu sağlıyorsa (*) sisteminin “aynı noktasına dönen yörünge”sidir. Ayrı noktaya dönen yörünge (Heteroclinic Orbit) ‘de başlayan bir yörüngesi aşağıdaki koşulu sağlıyorsa (*) sisteminin ve “ayrı noktalarına dönen yörünge”sidir. Y.A. Kuznetsov, “Elements of Applied Bifurcation Theory”, Springer, 2004.

Bir örnek Y.A. Kuznetsov, “Elements of Applied Bifurcation Theory”, Springer, 2004.

Bir örnek daha Bu özdeğerlerin özelliği nedir? Bu denge noktası civarında lineerleştirsek, özdeğerleri nerede olabilir? Burada ne var?

Dallanma parametreleri Dallanma diyagramına tekrar bakalım Dallanma Diyagramı: Dinamik sistemin parametre uzayının, her bir katmanda topolojik eşdeğerliğe bağlı olarak durum uzayının temsili ile katmanlaştırılması “dallanma diyagramı “ ‘nı verir. Wilson-Cowan Modeli Dallanma parametreleri F.C.Hoppensteadt, E.M. Izhikevich, “Weakly Connected Neural networks”, Springer, 1997.

Bir başka örnek- Cihan Soylu (Bitirme Ödevi) p(k + 1) = f(λp(k) + m(k) + I) m(k + 1) = f(p(k) − d(k)) n(k + 1) = f(p(k)) d(k + 1) = f(αn(k)), α=Wd - Wr