Yapay Sinir Ağlarına Giriş Neslihan Serap Şengör İ.T.Ü. Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:0212 285 3610

Slides:



Advertisements
Benzer bir sunumlar
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ Bilişsel Psikolojide Sistemler ve Modeller SEVTAP CİNAN İstanbul Üniversitesi, Edebiyat.
Advertisements

Biyomedikal Sistemlerin Modellenmesi ve Kontrolü Neslihan Serap Şengör İ.T.Ü. Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Learning to learn network for low skilled senior learners ÖĞRENMEYİ İSTİYORUM, FAKAT... BENİM STİLİM NE? Öğrenmeyi öğrenme Her yerde ve her zaman kendi.
Algoritma.  Algoritma, belirli bir görevi yerine getiren sonlu sayıdaki işlemler dizisidir.  Başka bir deyişle; bir sorunu çözebilmek için gerekli olan.
Enerji Sistemlerinde Akıllı Sistem Uygulamaları Akademik Yılı Bahar yarıyılı Doç.Dr. Raşit ATA
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Sinir Hücresi Nasıl Fark Edilmiş? eCell.jpg/512px-PurkinjeCell.jpg Ramon y Cajal ( )
BİYOMEDİKAL MÜHENDİSLİĞİNDE İLERİ KONULAR Neslihan Serap Şengör (6 Hafta) Bilişsel Süreçlerin Matematiksel Modellenmesi 1 Ödev+ 1 Sınav Mürvet Kırcı (3.
Çıkış katmanındaki j. nöron ile gizli katmandaki i. nörona ilişkin ağırlığın güncellenmesi Ağırlığın güncellenmesi Hangi yöntem? “en dik iniş “ (steepest.
Learning to learn network for low skilled senior learners FARKLI ÖĞRENME STİLLERİ! Öğrenmeyi öğrenme Her yerde ve her zaman kendi stilimle öğrenme. Developed.
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ 1 MAVİ YEŞİL KIRMIZI SARI YEŞİL MAVİ SARI KIRMIZI SARI KIRMIZI YEŞİL MAVİ KIRMIZI YEŞİL.
Biçimbilimsel Özniteliklerin Eş-Oluşumlarına Dayalı Doku Betimleme Okan Üniversitesi Bilgisayar Mühendisliği Bölümü / İstanbul İzzet Özen Erchan Aptoula.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Hopfield Ağı Ayrık zamanSürekli zaman Denge noktasının kararlılığı Lyapunov Anlamında kararlılık Lineer olmayan sistemin kararlılığı Tam Kararlılık Dinamik.
Bu durumda lineer sistemin çözümleri neler olabilir? Tüm bu durum portrelerinde ortak bir şey var, ne? S. Haykin, “Neural Networks- A Comprehensive Foundation”2.
Arş.Gör.İrfan DOĞAN.  Bugün otizm tedavisinde en önemli yaklaşım, özel eğitim ve davranış tedavileridir.  Tedavi planı kişiden kişiye değişmektedir,
YAPAY SİNİR AĞLARINA GİRİŞ. Yapay Sinir Ağlarının Genel Tanımı İnsan beyninin özelliklerinden olan öğrenme yoluyla yeni bilgiler türetebilme, yeni bilgiler.
DONANIM VE YAZILIM.
(Competitive Learning)
Learning to learn network for low skilled senior learners ÖĞRENCİ Mİ? EVET, O BENİM! Learning to Learn Training Bilinçsiz zihnimiz Developed with the support.
İNSAN BİLGİSAYAR ETKİLEŞİMİ: BİLİŞSEL BOYUT III. İBE alanında etkileşimi anlamaya çalışan uzmanlar, özellikle şema ve zihinsel modeller üzerinde yoğunlaşırlar.
Momentum Terimi Momentum terimi Bu ifade neyi anımsatıyor? Lineer zamanla değişmeyen ayrık zaman sistemi HATIRLATMA.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ x1x1 x2x2 xmxm 1 w1w1 w2w2 wmwm w m+1 v y Hatırlatma.
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ Hesaplamalı Sinirbilim Modeller farklı zamansal ve konumsal ölçeklerde süreçleri ele.
Yapay Sinir Ağlarına Giriş Neslihan Serap Şengör Oda no: 1107 Tel: Tuba Ayhan Oda no: 1109.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
Davranış durum Eğitilen sistem Değer Atama Ortam Kritik Ödül r δ Eğiticisiz Öğrenme Pekiştirmeli Öğrenme (reinforcement learning) Öğrenme işleminin her.
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Yapay Sinir Ağlarına Giriş Neslihan Serap Şengör Oda no: 1107 Tel: Murat Şimşek Oda no: 1115.
BOĞAZLAYAN HALK EĞİTİM MERKEZİ INSTITUTUL POSTLICAL PHOENIX htttp:// NEWHAM COLLEGE OF FURTHER.
Hata Fonksiyonları Lojistik Fonksiyon ß ß Huber Fonksiyonu ß ß.
Bölüm 3 : Yapay Sinir Ağları (MatLab) Artificial Neural Network
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ Öğrenme nasıl gerçekleşiyor? Ağırlıklar hatayı en azlıyacak şekilde güncelleniyor Öğrenme.
Devre ve Sistem Analizi
Ders notlarına nasıl ulaşabilirim
x* denge noktası olmak üzere x* sabit nokta olmak üzere
Elektrik Devrelerinin Temelleri
Elektrik Devrelerinin Temelleri
Dinamik Yapay Sinir Ağı Modelleri
Yapay Sinir Ağlarına Giriş
Elektrik Mühendisliğinde Matematiksel Yöntemler
Problem Çözme ve Algoritmalar
Yapay Sinir Ağı Modeli (öğretmenli öğrenme) Çok Katmanlı Algılayıcı
Yapay Sinir Ağlarına Giriş
Bilginin Organizasyonu
YAPAY SİNİR AĞLARI Bölüm 1-Giriş
BİYOİNFORMATİK NEDİR? BİYOİNFORMATİKTE KULLANILAN SINIFLAMA YÖNTEMLERİ
“Bilgi”’nin Gösterimi “Bilgi” İnsan veya Makina Yorumlama Öngörme
• EDVAC (Electronic Discrete Variable Automatic Computer)
Yapay Sinir Ağlarına Giriş
ARTIFICIAL NEURAL NETWORKS-ANN (YAPAY SİNİR AĞLARI-YSA)
MATEMATİK DERSİ ÖĞRETİM PROGRAMI
Bazı Doğrusal Olmayan Sistemler
Eğiticisiz Öğrenme Hatırlatma
Meriç ÇETİN Pamukkale Üniversitesi Bilgisayar Mühendisliği Bölümü
ÖDE5024 DAVRANIŞ BİLİMLERİNDE İSTATİSTİK Yüksek Lisans
Prof. Dr. Eşref ADALI Doç. Dr. Şule Gündüz Öğüdücü Sürüm-B
NİŞANTAŞI ÜNİVERSİTESİ
BİYOMEDİKAL MÜHENDİSLİĞİ LİSANS EĞİTİMİ
Bilgisayar Bilimi Koşullu Durumlar.
NİŞANTAŞI ÜNİVERSİTESİ
Pedagojİk Formasyon Sertifika programI ÖĞRETİM İLKE VE YÖNTEMLERİ Hafta V Prof.Dr.Bülent ÇAVAŞ.
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
PROBLEM ÇÖZME TEKNİKLERİ
Sunum transkripti:

Yapay Sinir Ağlarına Giriş Neslihan Serap Şengör İ.T.Ü. Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:

Ders notlarına nasıl ulaşabilirim Elektrik-Elektronik Fakültesi, ELE 420

Ders Hakkında 1 Yarıyıl içi sınavı % 25 2 Ödev Genlikte Ayrık Algılayıcı %10 Çok Katmanlı Algılayıcı %15 Yarıyıl Sonu Sınavı % 50

Kaynaklar  S. Haykin, “Neural Networks and Learning Machines”, 3 rd Edition, Pearson International Edition, 2009, New Jersey.  K. Mehrotra, C.K. Mohan, S. Ranka, “Elements of Artificial Neural Networks”, MIT Press, 1996, Cambridge.  E. Alpaydın, “Yapay Öğrenme”, Boğaziçi Üniversitesi Yayınevi, 2011, İstanbul. Introduction,1-4, 9,13,151-3,5,6

Nelerden Bahsedeceğim Beynin işleyişi önemli Temel birimlerin yapıları ve bağlantı düzenlerini belirlemek için Öğrenme kurallarını anlayabilmek ve gerçeklemek için Amaç: Varolan yaklaşımlarla çözüm bulamadığımız problemleri çözebilecek araçlar, yöntemler geliştirmek. Faydalandığımız, esinlendiğimiz fiziksel yapı canlıların karar vermek, davranışlarını oluşturmak için kullandıkları yapı: AMA elde edilecek sonuçlar beynin işleyişini açıklamaktan uzak, mühendislik problemlerine çözüm getirmeye yarayacak yöntemler ve yaklaşımlar olacak

Her zaman, her problemin çözümü için YSA mı? No matter how the design is performed, knowledge about the problem domain of interest is acquired by the network in a comparatively straight forward and direct manner through training. The knowledge so acquired by the network is represented in a compactly distributed form as weights across the synaptic connections of the network. While this form of knowledge representation enables neural network to adapt and generalize unfortunately the neural network suffers from the inherent inability to explain, in a comprehensive manner, the computational process by which the network makes a decision or reports its output. This can be a serious limitation, particularly in those applications where safety is of prime concern, as in air traffic control and medical diagnosis. In applications of this kind, it is not only highly desirable but also absolutely essential to provide some form of explanation capability. Haykin 1999

Nelerden Bahsetmeyeceğim Yapay sinir ağlarını gerçekleyecek fiziksel devreler İstatiksel yapılar Billişsel süreçlerin modellenmesi

Anlatacaklarım Belli başlı ağ yapıları Perceptron Çok katmanlı algılayıcı Özdüzenlemeli Hopfield... Belli başlı öğrenme kuralları Hebb Eğiticili öğrenme Eğiticisiz Öğrenme...

Yapay Sinir Ağları (Artificial Neural Networks) Bir Yapay Sinir Ağı Tanımı (Alexander, Morton 1990) Yapay sinir ağı, basit işlemci ünitelerinden oluşmuş, çok yoğun, parallel ve dağılmış düzende çalışan bir işlemcidir. Deneysel bilgiyi depolama ve kullanıma sunma özelliğine sahiptir. Beyni iki şekilde andırır: 1) Ağ, bilgiyi ortamdan öğrenme yolu ile elde eder. 2) Gerekli bilgiyi depolama için basit işlemci ünitelerin arasındaki bağlantıları kullanır. Sinir hücresi Sinaptik ağırlıklar

Sinir Hücresi

Sinir Hücresi- Hodgkin-Huxley Modeli

x1x1 x2x2 xmxm 1 w1w1 w2w2 wmwm w m+1 ' v y Sinir Hücresi McCulloch-Pitts

Aktivasyon Fonksiyonu

Hopfield

Sinir Hücrelerinin Organizasyonu

girişler ağırlık matrisi gizli katman çıkış katmanı çıkışlar İleri yol (Feedforward) ağırlık matrisi girişler Tam bağlaşımlı (Recurrent) Ağ Yapıları ağırlık matrisi öznitelik dönüşümü girişler Hücresel Ağ Kohonen Ağı

Çözümleyici Makina (analytical engine) Charles Babbage ( ) Çağdaş bilgisayarın öncüsü, Delikli kartlar ile komutlar veriliyor, Herhangi bir aritmetik işlemi yapabiliyor, Sayıların saklanabileceği bir bellek birimi var, İşlemlerin art arda ve sırasıyla yapılmasını sağlayan ardışık kontrol birimi var. Bu donanım, peki yazılımı kim tasarlıyor? Matematikçi, Cambridge ( ) Herşey nasıl başladı?

İlk bilgisayar programcısı Augusta Ada Byron- Lady Lovelace ( ) It is desirable to guard against the possibility of exaggerated ideas that might arise as to the powers of the analytical engine. In considering any new subject, there is frequently a tendency, first, to overrate what we find to be already interesting or remarkable, and secondly by a sort of natural reaction to undervalue the true state of the case, when we do discover that our notions have surpassed those that were really valuable. The analytical engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform. It can follow the analysis, but it has no power of anticipating any analytical relations or truth. Its province is to assist us in making available what we are already acquinted with. 1843

ENIAC (Electronic Numerical Integrator and Computer) John Von Neumann Bellek aritmetik/mantık ünitesi Matematikçi ( ) Turing Makinesi mekanik hesaplamanın sınırlarını belirler...an unlimited memory capacity obtained in the form of an infinite tape marked out into squares, on each of which a symbol could be printed. At any moment there is one symbol in the machine; it is called the scanned symbol. The machine can alter the scanned symbol and its behavior is in part determined by that symbol, but the symbols on the tape elsewhere do not affect the behavior of the machine. However, the tape can be moved back and forth through the machine, this being one of the elementary operations of the machine. Any symbol on the tape may therefore eventually have an innings

Mc Culloch-Pitts Sinir Hücresi Modeli (1943) nöro-fizyolog matematikçi Sinaptik ağırlıklar girişler bias Aktivasyon fonksiyonu

EDVAC (Electronic Discrete Variable Automatic Computer) 1950 John Von Neumann Hebb Öğrenme Kuramı (1949) “When an axon of a cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency as one of the cells firing B is increased. “ (Organization of Behavior) zamana bağlı yerel Öğrenen adaptif sistemler için esin Fizyolog ( ) Öğrenme hızı Çıkış işareti Postsinaptik aktivite giriş işareti Presinaptik aktivite

Snark- Marvin Minsky (1951) kendi kendine ağırlıkları ayarlayabiliyor işe yarar hiç bir bilgi işleme fonksiyonunu gerçekleyemedi Perceptron – Frank Rosenblatt (1958) Görüntü tanıma Eğiticili öğrenme Perceptron yakınsama teoremi Bilgisayar bilimcisi ( ) ADALINE ( ADaptive LINEar combiner )- Bernard Widrow, Ted Hoff LMS kuralı Perceptron ile farkı öğrenme kuralı Elektrik mühendisi Matematikçi ( 1928)

Karanlık Yıllar ( ) “Perceptrons” Minsky-Papert 1969 matematiksel olarak Perceptron’un XOR mantık fonksiyonunu gerçekleyemeyeceğini ispatladılar. Grossberg- ART özdüzenlemeli bir yapı Kohonen – özdüzenlemeli bir başka yapı Fukushima – özdüzenlemeli bir başka yapı daha Karanlık Yıllardan Çıkış 1982 Hopfield Ağı Geriye Yayılım Algoritması (Backpropagation) * 1974 Werbos * 1985 Parker * 1985 LeCun * 1986 Rumelhart

“Bilgi”’nin Gösterimi “Bilgi” İnsan veya Makina Yorumlama Öngörme Uygun yanıt verme Depolanmış enformasyon veya model Kurallar: (1) Benzer sınıflardan benzer girişler ağda benzer gösterimler oluşturmalı ve böylece aynı kategoriye ait olarak sınıflanmalı, (2) Farklı sınıflara ayrılacak nesnelere, ağda çok farklı gösterimler atanmalı, (3) Belirli bir özellik önemli ise ağda onun gösterimi ile görevlendirilen hücre sayısı daha fazla olmalı, Nasıl anlayacağız? Nasıl gösterimi oluşturacağız?

Benzerliğin bir ölçütü - Norm V vektör uzayı olmak üzere, aşağıdaki dört özelliği sağlayan fonksiyon : normdur