Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

ÜÇ SINIFLI DURUMLARDA FARKLI SIRALAMALAR İÇİN OLUŞTURULAN ALTERNATİF HİPOTEZLER VE BU HİPOTEZLERE İLİŞKİN TESTLER Elif KAPLAN.

Benzer bir sunumlar


... konulu sunumlar: "ÜÇ SINIFLI DURUMLARDA FARKLI SIRALAMALAR İÇİN OLUŞTURULAN ALTERNATİF HİPOTEZLER VE BU HİPOTEZLERE İLİŞKİN TESTLER Elif KAPLAN."— Sunum transkripti:

1 ÜÇ SINIFLI DURUMLARDA FARKLI SIRALAMALAR İÇİN OLUŞTURULAN ALTERNATİF HİPOTEZLER VE BU HİPOTEZLERE İLİŞKİN TESTLER Elif KAPLAN

2 Literatürde, tedavi etkinliklerini ya da daha genel olarak dağılımları karşılaştırmak amacıyla bir çok yöntem önerilmiştir. Biz üç dağılımı karşılaştırmak amacıyla kullanılan bazı yöntemler üzerinde duracağız.

3 Bahsedilen yöntemler “tedavi etkinlikleri arasında fark yoktur.” olan aynı yokluk hipotezini dikkate alırken seçenek hipotezinde farklılık göstermektedir. Alternatif hipotezler genel alternatif hipotezi olan” En az iki tedavi etkinliği arasında fark vardır.” olabilirken, farklı sıralamalar için de oluşturulabilirler. Örneğin monoton sıralama (class1 class3) ve tree sıralama (class1>class2

4 Genel Alternatif Hipotez Kruskal Wallis Test: Dağılımdan bağımsız bir testtir. Anova : Grupların ortalamaları arasındaki farkı test eden parametrik bir testtir.

5 Monoton Sıralama Monoton sıralamalar genelde, yan etkilerin oluşumunun, artan doz seviyeleriyle artmasının beklendiği zehirli madde çalışmalarında incelenir.Monoton sıralama için kullanılan bazı testleri şu şekildedir;

6 1) The Jonckheere-Terpstra Testi : “Tedavi etkinlikleri monoton sıralama göstermektedir. (Y 1

7 2) Terpstra ve Magel Testi : Aynı alternatif hipotez için kullanılan parametrik olmayan bir testtir.Ancak ikili karşılaştırmalar yapmak yerine bütün sınıfları aynı anda karşılaştırmaktadır. Standart normal dağılımla karşılaştırılmaktadır. Y 1

8 3) VUS Y 1 =Y 2

9 4) Cuzick Test: Wilcoxon testine dayanan bir testtir.Standart normal dağılımla karşılaştırılır. Ri : i. grubun rankları toplamı li : i. grubun skorları toplamı

10 5) Le testi : Monoton sıralama için kullanılan başka bir parametrik olmayan testtir.Standart normal dağılımla karşılaştırılır. Li : monoton sıralamada i.grubun solunda yer alan gruplardaki toplam gözlem sayısı, Mi : monoton sıralamada i.grubun sağında yer alan gruplardaki toplam gözlem sayısı, Ri : i. grup için ortalama rank değeridir.

11 6 ) Monoton Sıralama İçin F Testi: Şimdiye kadar gösterilen testlerin hepsi parametrik olmayan yaklaşımlardı. Ancak F testinin geliştirilmişi olan testi parametrik bir testtir. (1), Y 1 ≤Y 2 ≤Y 3 kısıtı altında, denklemini minimize eden noktadır.

12 Umbrella Sıralama Umbrella sıralamalarına genelde, tek faktör çalışmalarında rastlanır.Bu çalışmalarda, bir noktaya kadar tedavi düzeylerindeki artışla cevap değişkeninin artması,belirli bir noktadan sonra ise tedavi düzeyinin artması ile cevap değişkeninin azalması beklenmektedir.

13 1) Mack-Wolfe Testi : Umbrella alternatif hipotezi olduğunda kullanılan bir testtir. p sınıf veya tedavi için p(p-1)/2 tane ikili karşılaştırma yapmaktadır. p=3 olduğunda ilgilenilen alternatif hipotez Y 1 Y 3 olmaktadır.

14 2) Umbrella Volume : Umbrella sıralama söz konusu olduğunda kullanılan,parametrik olmayan bir yaklaşımdır. Y 2 >Y 1

15 3) Umbrella Sıralama İçin F Testi Parametrik bir testtir. Formül (1) ile aynı formdadır., Y 1 ≤Y 2 ≥Y 3 kısıtı altında, denklemini minimize eden noktadır. Monte-Carlo algoritması ile hesaplanabilmektedir.

16 Tree Sıralama : Tree sıralama için kullanılan The Fligner-Wolfe Testi tedavilerin kontrolden farklı olup olmadığını kontrol etmek için kullanılan dağılımdan bağımsız bir testtir.

17 Sürekli ölçümler ve 3 sınıf olduğu durumlarda özel sıralamalar için kullanılan yöntemler aşağıdaki gibidir.Bütün yöntemler “Üç dağılım arasında fark yoktur.” yokluk hipotezini dikkate alırken,alternatif hipotezde farklılık gösterirler.

18 TestYaklaşımAlternatif Hipotez Notlar Kruskal WallisNon-ParametrikGenel ANOVAParametrikGenel Jonckheere-Terpstra (JT) Non-ParametrikMonoton Terpstra-Magel (TM)Non-ParametrikMonotonVUS değerine eşit VUSNon-ParametrikMonoton CuzickNon-ParametrikMonotonEşit örneklem büyüklüğü için Le testine eşit LeNon-ParametrikMonoton ParametrikMonoton Mack-Wolfe (MW)Non-ParametrikUmbrella Umbrella Volume (UV)Non-ParametrikUmbrella ParametrikUmbrella Fligner-Wolfe (FW)Non-ParametrikTree

19 9 senaryo için simülasyon çalışması yapılmış,eşit örneklem sayılarında ve farklı dağılımlar için bütün testler uygulanmıştır.Her bir senaryo 1000 kere tekrar edilmiştir. Buna göre her bir senaryo için testlerin verdiği sonuçlar;

20 Y1,Y2,Y3nini KWFJTVUSCuzickLeMWUVFW N(0,1),N(0,1),N(0,1) (Y1=Y2=Y3) 100,0530,0580,0670,0480,066 0,0580,0730,0520,0540, ,042 0,0370,0250,036 0,0370,0770,051 0, ,0700,0580,0650,0500,063 0,0550,0500,0480,0490,062 Her biri standart normal dağılan üç sınıfın arasında fark olup olmadığına bakılan ilk simülasyonda, yokluk hipotezi doğru iken reddedilme oranları yukarıdaki gibidir. 1. Senaryo : N(0,1),N(0,1),N(0,1) (Y1=Y2=Y3)

21 Y1,Y2,Y3nini KWFJTVUSCuzickLeMWUVFW N(0,1),N(0.5,1),N(1,1) (Y1

22 Y1,Y2,Y3nini KWFJTVUSCuzickLeMWUVFW t 3, t 3 +0,5,t 3 +1 (Y1

23 Y1,Y2,Y3nini KWFJTVUSCuzickLeMWUVFW N(0,1),N(1,1),N(0,1) (Y1 Y3) 100,5340,5720,0250,0100,034 0,2330,8340,7630,6980, ,8900,9020,0340,0100,048 0,4580,9770,9640,9490, ,996 0,0330,0000,034 0,7251,000 0,9980, Senaryo: N(0,1),N(1,1),N(0,1) (Y1 Y3) Umbrella sıralama söz konusu iken düşük örneklem sayısında en iyi sonuç veren testler; MW, UV ve Fu’dur. n sayısı arttıkça genel hipotezler için kullanılan testlerin gücü de bu testlere yaklaşmaktadır.

24 Y1,Y2,Y3nini KWFJTVUSCuzickLeMWUVFW t 3, t 3 +1, t 3 (Y1 Y3) 100,3560,2770,0380,0170,041 0,1400,6830,6200,3960, ,6710,4800,0440,0110,044 0,1960,8700,8480,6120, ,9410,7730,003 0,032 0,3790,9890,9860,8540, Senaryo: t 3, t 3 +1, t 3 (Y1 Y3) Söz konusu normal olmayan dağılımda, umbrella sıralamada küçük örneklemler için en iyi sonucu veren testler; MW ve UV’dir. Örneklem sayısı büyüdükçe KW testinin gücü de bu testlere yaklaşmaktadır.

25 Y1,Y2,Y3nini KWFJTVUSCuzickLeMWUVFW N(0,0.25),N(1,9),N(0,4) (Y1 Y3) 100,1520,1790,0360,0030,044 0,0500,2860,4030,2500, ,2710,3080,0340,0020,045 0,0620,4170,6570,3940, ,4960,5780,0570,0000,063 0,1540,6210,8940,6720, Senaryo:N(0,0.25),N(1,9),N(0,4) (Y1 Y3) Tablodaki farklı normal dağılımlardan türetilmiş umbrella sıralamadaki gruplar için en iyi sonucu veren test VUS iken, diğer testlerin güçlerinin oldukça düşük olduğu görülmektedir.

26 Y1,Y2,Y3nini KWFJTVUSCuzickLeMWUVFW U[0.2,1.2],N(1.3,1), χ 1 2 (Y1 Y3) 100,3000,2480,0220,0190,023 0,1360,5550,5670,3310, ,5380,3500,0360,0180,030 0,3160,7300,7680,4500, ,8820,7100,0400,0340,023 0,6790,9540,9660,8310, Senaryo: U[0.2,1.2],N(1.3,1), χ 2 1 (Y1 Y3) Farklı dağılımlardan türetilen üç sınıfın umbrella sıralamada, en iyi sonuçları veren testler MW ve UV testleridir.

27 Y1,Y2,Y3nini KWFJTVUSCuzickLeMWUVFW N(1,1),N(0,1),N(1,1) (Y1>Y2Y2

28 Y1,Y2,Y3nini KWFJTVUSCuzickLeMWUVFW t 3 +1,t 3,t 3 +1 (Y1>Y2Y2

29 Aynı senaryolar farklı örneklem genişliğindeki sınıflara {(10,10,20),(10,10,40),(10,20,40)} uygulandığında sonuçlar şöyle olmaktadır;

30 Y1,Y2,Y3n*n* KWFJTVUSCuzickLeMWUVFW N(0,1),N(0,1),N(0,1) (Y1=Y2=Y3) 10,0440,0420,0450,0380,0470,3550,0410,0670,0540,045 20,0520,0510,0560,0440,0630,8310,0520,063 0,0540,057 30,045 0,0430,0390,0470,5620,0430,0750,0620,0420,043 Testler için 1.tip hata değerleri yukarıdaki gibidir. 1. Senaryo : N(0,1),N(0,1),N(0,1) (Y1=Y2=Y3)

31 Y1,Y2,Y3n*n* KWFJTVUSCuzickLeMWUVFW N(0,1),N(0.5,1),N(1,1) (Y1

32 Y1,Y2,Y3n*KWFJTVUSCuzickLeMWUVFW t 3, t 3 +0,5,t 3 +1 (Y1

33 Y1,Y2,Y3n*n* KWFJTVUSCuzickLeMWUVFW N(0,1),N(1,1),N(0,1) (Y1 Y3) 10,6080,6560,0050,0040,0120,0670,1600,8740,8540,7520,000 20,6470,7040,0050,008 0,1600,1030,8830,8860,7890,000 30,9090,9230,0000,0050,0010,0060,1520,9900,9630,9670, Senaryo: N(0,1),N(1,1),N(0,1) (Y1 Y3) Tablodaki gibi normal dağılımdan ve farklı örneklem sayısından türetilen üç sınıf için en iyi sonucu veren testler MW ve UV testleridir.

34 Y1,Y2,Y3n*n* KWFJTVUSCuzickLeMWUVFW t 3, t 3 +1, t 3 (Y1 Y3) 10,4260,3610,0130,0150,0140,1070,1040,7320,7250,4520,000 20,4480,3420,0000,0090,0030,2660,0410,7000,7340,4300,000 30,7240,5560,0000,0120,0020,0200,1130,8850,8270,6540, Senaryo: t 3, t 3 +1, t 3 (Y1 Y3) Normal olmayan dağılımdan türetilen ve umbrella sıralama gösteren tablodaki sınıflar için en güçlü testler MW ve UV testleridir.

35 Y1,Y2,Y3n*n* KWFJTVUSCuzickLeMWUVFW N(0,0.25),N(1,9),N(0,4) (Y1 Y3) 10,1450,1940,0160,0010,0230,1960,0170,3110,5530,2710,014 20,1440,2210,0040,0010,0070,5650,0020,2950,6170,2810,008 30,2180,2690,0040,0000,0030,1690,0020,4050,7610,3630, Senaryo:N(0,0.25),N(1,9),N(0,4) (Y1 Y3) Farklı normal dağılımlardan türetilen umbrella sıralamadaki gruplar için en iyi sonucu veren test UV testidir.

36 Y1,Y2,Y3n*n* KWFJTVUSCuzickLeMWUVFW U[0.2,1.2],N(1.3,1), χ 1 2 (Y1 Y3) 10,2820,1500,0020,0230,0020,0660,0300,5170,6910,2030,001 20,2990,0990,0000,0220,0010,2500,0070,5490,8050,1460,001 30,4320,1490,0000,0250,0000,0360,0100,7370,9110,2150, Senaryo: U[0.2,1.2],N(1.3,1), χ 2 1 (Y1 Y3) Farklı dağılımlar ve farklı örneklem büyüklükleri için umbrella sıralamada en iyi sonucu veren test UV’dir.

37 Y1,Y2,Y3n*n* KWFJTVUSCuzickLeMWUVFW N(1,1),N(0,1),N(1,1) (Y1>Y2Y2

38 Y1,Y2,Y3n*n* KWFJTVUSCuzickLeMWUVFW t 3 +1,t 3,t 3 +1 (Y1>Y2Y2

39 SONUÇLAR Simülasyon sonuçlarına göre monoton sıralama için kullanılan JT ve Cuzick testlerinin güçleri eşit örneklem büyüklükleri için yüksektir. Le testinin ise farklı örneklem sayıları için verdiği sonuçların iyi olduğu görülmektedir. Bu nedenle gerçek araştırma uygulamalarında Le testinin kullanılması daha uygundur. Bir diğer sonuç ise, umbrella sıralamada UV testinin MW testinden daha güçlü olduğu görülmektedir.Ancak iki sınıf aynı dağılıma sahipse tersi söz konusudur-ki bu gerçek uygulamalarda yaygın olarak söz konusu değildir. Bütün senaryolarda, ANOVA ve KW testlerinin güçlerinin de farklı sıralamalar söz konusu olduğunda diğer testlere göre çok daha düşük olduğu görülmektedir.

40 MONOTON SIRALAMADA FARKLI DURUMLAR İÇİN EN GÜÇLÜ TESTLER DurumKWFJTVUSCuzickLeMWUVFW n1=n2=n3=10 n1=n2=n3=20 n1=n2=n3=40 N(0,1), N(0,5,1) N(1,1) X XXXXXX XXXXXX n1=n2=n3=10 n1=n2=n3=20 n1=n2=n3=40 t3, t3+0.5, t3+1 XXXX XXXXXX XXXXXX (n1,n2,n3)=(10,10,20) (n1,n2,n3)=(10,10,40) (n1,n2,n3)=(10,20,40) N(0,1), N(0,5,1) N(1,1) XXXXXX (n1,n2,n3)=(10,10,20) (n1,n2,n3)=(10,10,40) (n1,n2,n3)=(10,20,40 t3, t3+0.5, t3+1 XXXXXX

41 DurumKWFJTVUSCuzickLeMWUVFW n1=n2=n3=10 n1=n2=n3=20 n1=n2=n3=40 N(0,1), N(1,1), N(0,1) X n1=n2=n3=10 n1=n2=n3=20 n1=n2=n3=40 t 3, t 3 +1, t 3 X X n1=n2=n3=10 n1=n2=n3=20 n1=n2=n3=40 N(0,0.25), N(1,9), N(0,4) X n1=n2=n3=10 n1=n2=n3=20 n1=n2=n3=40 U[0.2,1.2], N(0,1), X² 1 X (n1,n2,n3)=(10,10,20) (n1,n2,n3)=(10,10,40) (n1,n2,n3)=(10,20,40) N(0,1), N(1,1), N(0,1) X X (n1,n2,n3)=(10,10,20) (n1,n2,n3)=(10,10,40) (n1,n2,n3)=(10,20,40) t 3, t 3 +1, t 3 X X (n1,n2,n3)=(10,10,20) (n1,n2,n3)=(10,10,40) (n1,n2,n3)=(10,20,40) N(0,0.25), N(1,9), N(0,4) X (n1,n2,n3)=(10,10,20) (n1,n2,n3)=(10,10,40) (n1,n2,n3)=(10,20,40) U[0.2,1.2], N(0,1), X² 1 X UMBRELLA SIRALAMADA FARKLI DURUMLAR İÇİN EN GÜÇLÜ TESTLER

42 TREE SIRALAMA İÇİN FARKLI DURUMLARDA EN GÜÇLÜ TESTLER DurumKWFJTVUSCuzickLeMWUVFW n1=n2=n3=10 n1=n2=n3=20 n1=n2=n3=40 N(1,1), N(0,1), N(1,1) X X n1=n2=n3=10 n1=n2=n3=20 n1=n2=n3=40 t3+1, t3, t3+1 X (n1,n2,n3)=(10,10,20) (n1,n2,n3)=(10,10,40) (n1,n2,n3)=(10,20,40) N(1,1), N(0,1), N(1,1) X (n1,n2,n3)=(10,10,20) (n1,n2,n3)=(10,10,40) (n1,n2,n3)=(10,20,40) t3+1, t3, t3+1 X

43 Kaynaklar Todd A. Alonzo, Christos T. Nakas, Constantin T. Yiannoutsos and Sherri Bucher, “A Comparison Of Tests For Restricted Orderings In The Three-Class Case”, Statistics İn Medicine,2009 Le CT., “ A new rank test against ordered alternatives in k-sample problems”, Biometrical Journal 1988 Cuzick J. “A Wilcoxon-type test for trend”,Statistics in Medicine 1985 Pan Guohua, Douglas A. Wolfe, “Comparing Groups With Umbrella Orderings”, Journal of the American Statistical Association,1996 Bewick Viv,Cheek Liz,Ball Jonathan, “Statistics review 10: Further nonparametric methods”,Critical Care, 2004


"ÜÇ SINIFLI DURUMLARDA FARKLI SIRALAMALAR İÇİN OLUŞTURULAN ALTERNATİF HİPOTEZLER VE BU HİPOTEZLERE İLİŞKİN TESTLER Elif KAPLAN." indir ppt

Benzer bir sunumlar


Google Reklamları