Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

PANEL VERİ ANALİZİ. 2 Panel Veri Tanımı … Panel veri; bireyler, ülkeler, firmalar, hanehalkları gibi birimlere ait yatay kesit gözlemlerinin belli bir.

Benzer bir sunumlar


... konulu sunumlar: "PANEL VERİ ANALİZİ. 2 Panel Veri Tanımı … Panel veri; bireyler, ülkeler, firmalar, hanehalkları gibi birimlere ait yatay kesit gözlemlerinin belli bir."— Sunum transkripti:

1 PANEL VERİ ANALİZİ

2 2 Panel Veri Tanımı … Panel veri; bireyler, ülkeler, firmalar, hanehalkları gibi birimlere ait yatay kesit gözlemlerinin belli bir zaman döneminde bir araya getirilmesidir(Baltagi, 1995). İstatistiksel analizlerde veriler zaman, yatay- kesit ve bu iki veri türünün birleşiminden meydana gelen karma verileri olarak üç sınıfa ayrılabilir. Eğer aynı kesit birimi zaman içinde izleniyorsa bu tür karma verilere panel veri (panel data) adı verilir (Gujarati, 1999).

3 3 …Panel Veri Tanımı … Örnek: Şirketlerin karını belirlemek için modelleme yapıldığı varsayılsın. Tek bir yıl için kesit serisi modeli; şirket yönetimi, fiziksel sermaye çeşidi ve finansal kaldıraç gibi açıklayıcı değişkenlerden oluşabilir.

4 4 …Panel Veri Tanımı … Panel veri analizinde örneklemdeki farklı zaman noktaları için bireysel gözlemler dikkate alınır ve bu örneklemdeki her bir bireysel veri için çoklu gözlemler oluşturulması sağlanır (Kennedy, 2006). Yatay kesit veri birçok birim için sadece bir dönem hakkında bilgi verirken, zaman serisi verisi sadece bir birimin dönemlere göre bilgisini vermektedir. Hem dönemlere hem de birimlere göre bilgiler isteniyorsa, panel veri kullanılmalıdır (Baltagi, 1995).

5 5 …Panel Veri Tanımı … Panel veri, zaman serisi ve yatay kesit verisinden daha karmaşık davranışsal modeller yapmaya ve bunları test etmeye yardımcı olur. Panel veri bazı özelliklere sahiptir. Bunlardan bazıları şöyledir: 1. Herhangi bir yatay kesitte araştırma konusu olan birimlerin (firmalar, ülkeler vb.) davranışlarını etkileyen sayısız ölçülemeyen açıklayıcı değişken vardır.

6 6 Bu değişkenlerin dışlanması sapmalı tahminlere neden olmaktadır. Benzer bir durum mikro birimlerin davranışlarını hep aynı yönde ancak her bir zaman döneminde farklı bir şekilde etkileyen zaman serisi değişkenlerinin dışlanması halinde de geçerlidir. Panel veri bu problemin giderilmesine olanak tanımaktadır. Panel Verinin Özellikleri…

7 7 …Panel Verinin Özellikleri… 2. Panel veri bir dönemden diğerine meydana gelen değişim ile mikro birimler arasındaki değişimi birleştirmek suretiyle değişkenlik meydana getirerek çoklu doğrusallığı azaltmaktadır. 3. Panel veri tek başına yatay kesit ya da zaman serisi verileri ile değerlendirilemeyen konuların incelenmesinde kullanılabilir.

8 8 Üretim fonksiyonlarının analizinde ölçek ekonomilerini teknolojik değişimden ayırma problemi bu duruma örnek olarak verilebilir. Yatay kesit ölçek ekonomilerinin incelenmesinde, küçük ve büyük firmaların maliyetlerinin karşılaştırılmasında kullanılabilir, ancak verilerin tamamı tek bir döneme ait olduğundan teknolojik değişimin etkisini tahmin etmek mümkün olmaz. Verilerin tek bir firma üzerine zaman serisinden oluşması tercih edilmez; …Panel Verinin Özellikleri…

9 9 bu firmanın maliyetlerinde zaman aşımında bir değişimin teknolojik değişmeden mi ya da firma büyüklüğünde bir değişmeden mi kaynaklandığını söylemediği için bu iki etkinin birbirinden ayrılması olanaksızdır. Geçici ve uzun dönem işsizlik arasındaki fark ikinci bir örnek olarak ele alınabilir. Yatay kesit bize tek bir yılda kimin işsiz olduğunu, zaman serisi ise bir yıldan diğerine işsizlik düzeyinin nasıl değiştiğini gösterir. …Panel Verinin Özellikleri…

10 10 Ancak her iki veri türü de aynı kişilerin bir yıldan diğerine işsiz olması, (düşük devir hızı) ya da bir yıldan diğerine farklı kişilerin işsiz olması (yüksek devir hızı) durumlarına ilişkin hiçbir ipucu vermez. Panel verileri kullanan yöntemler panel verilerle aynı kişilerin oluşturduğu örneklemin birkaç yıl boyunca izlenmesi nedeniyle bu devir hızı sorusunun yanıtını içerebilir. …Panel Verinin Özellikleri…

11 11 Panel veri dinamik uyarlamaların daha iyi incelenmesini sağlar. Yatay kesit verileri dinamikler hakkında hiçbir şey söylemez. Zaman serisi verilerinin ise iyi tahminler üretmeleri için yeterince uzun olmaları gerekir ve genellikle tüm dinamik davranışlarla ilişkilidir. İktisadi olayları anlamada birimlerin dinamik tepkilerine ilişkin bilgi çok önemlidir. Panel veri çeşitli birimlerin dinamik tepkileri üzerine mevcut bilgiyi kullanmak suretiyle çok uzun bir zaman serisine olan ihtiyacı giderebilir (Kennedy, 2006). …Panel Verinin Özellikleri…

12 12 Panel veriler bazı problemleri de beraberinde taşırlar. Veri yapılarına göre, veri toplamanın ciddi bir maliyeti söz konusudur. Bu maliyet bir bireyi en az iki zaman noktasında ölçme maliyetinin yanı sıra, aynı bireyi zaman boyunca izleme zorluğundan da ileri gelir. Bu ikinci nokta, uygulamada ciddi problemler yaratır. …Panel Verinin Özellikleri…

13 13 Örneğin, zaman boyunca takip edilen bir hanehalkını her ölçüm yapılacağı zaman aynı adreste bulmak zor olabilir. Bu nedenle, bu türden veri yapılarında bazı alt versiyonlar ortaya çıkmış ve yarı-panel, panel verilerde kayıp değerler vb. türünden araştırma alanlarının gelişmesine neden olmuştur (Diggle v.d., 1996). …Panel Verinin Özellikleri…

14 14 Panel Veri Analizinin Üstün Yönleri… Panel veri kullanmanın avantajları şunlardır: -Zaman serisi ve yatay kesit analizi ile kıyaslandığında panel veri analizi, araştırmacıya daha geniş bir veri seti ile çalışma imkanı sunar. - Bu, daha yüksek güvenilirliğe sahip parametre tahminleri, daha yüksek serbestlik derecesi ve açıklayıcı değişkenler arasında daha düşük çoklu doğrusal bağlantı, sonuç olarak daha etkin ekonometrik tahminler elde edilmesini sağlar.

15 15 -Panel veri analizi yatay kesit ya da zaman serisi yöntemleri ile analiz edilemeyecek olan iktisadi konularda araştırmacıya çalışma olanağı sunar. Buna ilave olarak, kompleks yapıları ve karmaşık davranış modellerini test etmede panel veri analizi üstün yönleriyle öne çıkar. - Panel veri analizi, kayıp ve gözlemlenemeyen verilerin etkisini ortaya koymak için bir kontrol mekanizmasıdır (Alus, 2006). …Panel Veri Analizinin Üstün Yönleri…

16 16 …Panel Veri Analizinin Üstün Yönleri… -Zaman serisi ve yatay kesit veri analizlerinde, bağımsız değişkenler tarafından gözlenemeyen birimlere ait farklı özellikler hata terimi içerisinde yer almaktadır. Panel veri analizi, söz konusu özellikleri her birim için farklı bir sabit tanımlayarak hata teriminden ayırmaktadır. - Yeterli bir zaman uzunluğunda, değişim dinamiklerinin çalışmasında panel veri analizi yatay kesit ve zaman serisi analizlerine göre daha avantajlı bir yöntemdir (Arslan, 2007).

17 17 …Panel Veri Analizinin Üstün Yönleri… - Dışlanan değişkenler, zaman serisi veya yatay kesit verisi kullanılarak yapılan çalışmalarda tahmin sonuçlarında sapmaya yol açarken; dışlanan değişken veya değişkenlerin birimlere veya zamana göre değişmeyen değişkenler olması durumunda, panel veri kullanımı sapmanın kontrol altına alınmasını sağlamaktadır. - Yatay kesit verisi kullanılarak yapılan tahminlerde, sadece birimler arasındaki farklılıklar incelenebilirken, panel veri kullanılarak hem birimler, hem de zaman içerisinde meydana gelen farklılıklar birlikte incelenebilmektedir (Pazarlıoğlu, Kiren, 2007).

18 18 Panel Veri Analizinin Üstün Yönleri… -Panel veri modelleri kantitatif (nicel) ve kalitatif (nitel) faktörlerin aynı model üzerinde birlikte belirlenmesine imkan vermektedir. -Örneğin sabit etkili panel veri modellerinde, birimler ve/veya zaman dönemleri arasındaki kalitatif faktörlerin etki farklılıkları, model spesifikasyonunda tanımlanan kukla değişkenler (birim kuklaları ve/veya zaman kuklaları) ile ölçülebilirken, kantitatif faktörlerin etki farklılıkları ise açıklayıcı değişkenlerin katsayıları ile ölçülebilmektedir (Tüzüntürk, 2007).

19 19 Panel Verinin Genel Gösterimi… k değişkenli bir panel veri regresyon modeli en genel biçimiyle aşağıdaki gibi gösterilebilir: Modelde, i=1,2,....,N kesit birimini ve t=1,2,......,T de zaman dönemini göstermektedir. Ayrıca hata terimi e ’nin ortalamasının sıfır ve sabit varyanslı olduğu varsayılmaktadır. (1)

20 20 …Panel Verinin Genel Gösterimi… dir.  2it den  kit ye kadar olan eğim katsayıları ise bilinmeyen tepki katsayılarıdır. Bunlar farklı birimler ve farklı zaman dönemleri için değişebilir. Model tahmin edilirken modelin sabit terimi, eğim katsayıları ve hata terimi ile ilgili çeşitli varsayımlar yapılmaktadır. Bunlarla ilgili yapılan varsayımlara bağlı olarak beş farklı model tahmin etmek mümkündür. Bu modellerde:

21 21 1- Hem sabit hem de eğim katsayıları birimlere ve zamana göre değişmez ve hata terimi zaman ve birimlere göre oluşan farklılıkları temsil edebilir. 2- Eğim katsayıları sabitken(aynı), sabit terim birimlere göre değişir, ancak zamana göre sabit kalabilir. 3- Eğim katsayıları sabitken,(aynı) sabit terim birimlere ve zamana göre değişebilir. 4- Hem sabit hem de eğim katsayıları birimlere göre değişebilir. 5- Tüm katsayılar(sabit terim ve eğim) hem zamana hem de birimlere göre değişebilir (Özer, Biçerli, 2004). …Panel Verinin Genel Gösterimi…

22 22 …Panel Verinin Genel Gösterimi… (1) nolu modelde tahmin edilmesi gereken parametre sayısının gözlem sayısından fazladır. Dolayısıyla, model bu formda tahmin edilemez. Modelin tahmin edilebilmesi için yeniden yapılandırılması gerekmektedir. (1) Bunun için; açıklayıcı değişkenler, hata terimi ve regresyon katsayıları ile ilgili bazı varsayımların yapılması gerekir. Regresyon katsayılarının tümünün aynı olduğu varsayıldığında, model aşağıdaki biçimde gösterilebilir:

23 23 …Panel Verinin Genel Gösterimi… (1) (2) (1) numaralı denklem (2) numaralı denkleme dönüşür: Bu model literatürde, “Birleştirilmiş Regresyon Modeli” dir.  1 parametresi, bütün birimlerin ortak bir kesmesi olduğunu ifade etmektedir.  2, …,  k parametreleri ;ayrı ayrı her bir açıklayıcı değişkenin bütün birimler üzerindeki ortak marjinal etkilerini göstermektedir. Bir başka ifade ile modeldeki  parametrelerinin birimler arasında ve/veya zaman üzerinde farklılık göstermediği varsayılmaktadır.

24 24 … Sabit ve Tesadüfi Etkili Modeller… Denklem (1) ile ifade edilen modelde, katsayılar farklı birimler için farklı zaman dönemlerinde farklı değerler almaktadır. Bu durumda tahmin edilen parametre sayısı, kullanılan gözlem sayısını aşmakta, yani model tahmin edilememektedir. Panel veri ile yapılan çalışmalarda daha çok hata terimlerinin özellikleri ve katsayıların değişebilirliği ile ilgili farklı varsayımlarda bulunarak farklı modeller elde edilebilmektedir. (1)

25 25 Farklı varsayımlarla elde edilen modeller “Sabit Etkili” ve “Tesadüfi Etkili” modellerdir. Her iki modelde de, e it hatalarının tüm zaman dönemlerinde ve tüm bireyler için bağımsız ve N (0,) şeklinde dağıldığı varsayılmaktadır (Griffits, 1993). … Sabit ve Tesadüfi Etkili Modeller…

26 26 …Sabit Etkili Modeller… Panel veri kullanılarak yapılan çalışmalarda birimler arasındaki farklılıklardan veya birimler arasında ve zaman içinde meydana gelen farklıklardan kaynaklanan değişmeyi, modele dahil etmenin bir yolu; mevcut değişmenin regresyon modelinin katsayılarının bazılarında veya tümünde değişmeye yol açtığını varsaymaktadır. Katsayıların birimlere veya birimler ile zamana göre değiştiğinin varsayıldığı modellere “Sabit Etkili Modeller” denmektedir (Pazarlıoğlu, 2001).

27 27 İlk yol her bir birey için bir kukla değişken kullanmaktır. Bunun yapılması her bir bireyin farklı bir kesit katsayısına sahip olmasına izin verir ve dolayısıyla bu kuklaların hepsini içeren bir basit en küçük kareler uygulaması yukarıda sözü edilen sapmadan bir koruma sağlayacaktır. “Sabit etki modeli” sabit etki tahmincisi olarak adlandırılan bir tahmincinin oluşmasına neden olur. …Sabit Etkili Modeller…

28 28 …Sabit Etkili Modeller… Modelin genel formülasyonu, birimler arasındaki farklılıkların sabit terimdeki farklılıklarla yakalanabildiğini varsaymaktadır. Bu amaçla panel veri modeli kukla değişken yardımıyla tahmin edilmektedir. 1’nolu model ele alındığında, olduğu varsayılmaktadır. Burada yalnızca sabit terim değişmekte ve sabit terim zamana göre değil, kesit bazında farklılıklar göstermektedir. Yani zaman boyutu sabit tarafından korunmasına rağmen bireyler arasındaki davranışlarında farklılık gösterdiği ifade edilmektedir. (4)

29 29 …Sabit Etkili Modeller… Örnek Dört şirket mevcut. GM, US ve WEST ve GE. Bu şirketlerin brüt reel yatırımlarının (I:Y), firmaların reel değerine (CAP:X2)ve reel sermaye stokuna (PL:X3) nasıl bağlı olduğuyla ilgilenmiştir. Her bir şirkete ait üç adet değişken yılları için verilmiştir. Böylece 4 yatay kesit ve 20 yıllık bir zaman serisi mevcut olmaktadır(R.Kök, N.Şimşek). Not: zaman serisi Dört şirket GM, US ve WEST ve GE: yatay kesit verisidir.

30 30 Her bir yatay kesitin “bireyselliklerini” dikkate almanın bir yolu, her bir şirket için sabit katsayıların farklı olmasına, buna karşılık eğim katsayılarının aynı olmasına izin vermektir. Bu model Sabit Etkiler Modelidir. Buradaki sabit etkiler terimi, sabit her bir kesit için farklı ancak, her bir kesitin sabitinin zaman boyunca değişmemesinden (time invariant) gelmektedir. Bu modelde eğim katsayıları hem zaman hem de kesit için aynı olmaktadır. Şirketler arasında sabitlerin farklı olması nasıl sağlanabilir? …Sabit Etkili Modeller…

31 31 …Sabit Etkili Modeller… Burada gözlem GM’ye aitse D 2i =1, US’ye aitse D 3i =1 ve WEST’e aitse D 4i =1değerini, diğer durumlarda 0 değerini almaktadır. Yani, α 1 GE’nin sabit terimini, α 2, α 3 ve α 4 sırasıyla GM, US ve WEST’in sabit katsayılar farkını (GE’nin sabit katsayısından ne kadar farklı olduğunu) göstermektedir. Kısaca, bu örnekte GE karşılaştırma şirketi olmaktadır.

32 32 Bu şekildeki bir tahmin sonucu şöyledir: Y it = D 2i D 3i D 4i X 2i X 3i R 2 = Dört şirketin sabit katsayıları, istatistiksel olarak farklıdır. Sabit katsayılar GE için , GM için (= ), US için (= ) ve WEST için (= ) olarak elde edilebilir. …Sabit Etkili Modeller…

33 33 Eviews programında bu Eviews programında bu sonuçlar Fixed Effect seçeneği seçildiğinde kendiliğinden elde edilebilir: 12 Dependent Variable: I Method: Pooled Least Squares Variable Coefficient Std. Errort-Statistic Prob. CAP PL Fixed Effects _GE--C _GM--C _US--C _WEST--C Her şirketin sabiti farklı, eğimi aynı. Katsayı tahminleri anlamlıdır. Sabit Etkili Modeller… I:Brüt reel yatırımlar CAP:Firmaların reel değeri PL:Reel sermaye stoku Her şirketin sabiti

34 34 Tesadüfi Etkiler Modeli… Panel veri ile yapılan çalışmalarda, birimlere veya birimlere ve zamana göre meydana gelen farklılıklardan kaynaklanan değişim “Sabit Etkili Modeller” kullanılarak incelenebileceği gibi, “Tesadüfi Etkili Modeller” kullanılarak da incelenebilmektedir. Sabit etkiler modeli yaygın bir şekilde kullanılmasına rağmen, çok sayıda bireyin söz konusu olması serbestlik derecesi kaybına neden olmaktadır.

35 35 … Tesadüfi Etkiler Modeli… Sabit etkiler modelinin kullanılmasının nedenlerinden birisi, modelin tanımlanmasında cinsiyet gibi zaman içinde değişmeyen bireyle ilgili açıklayıcı değişkenleri modele dahil etmekte başarısız olunması ve kukla değişkenlerin modele dahil edilmesinin bu bilgisizliği örtmesidir. Eğer kukla değişkenler doğru model konusunda bilgi vermiyorsa bu durumda tesadüfi etkiler modeli ya da diğer bir adıyla hata bileşen modeli kullanılarak model hakkındaki bu bilgisizlik hata terimi yoluyla ifade edilmeye çalışılır.

36 36 … Tesadüfi Etkiler Modeli… Tesadüfi etkili modellerde, birimlere veya birimlere ve zamana göre meydana gelen değişiklikler, modelde hata teriminin bir bileşeni olarak dahil edilmektedir. Bunun temel sebebi sabit etkili modellerde karşılaşılan serbestlik derecesi kaybının önlenmek istenmiş olmasıdır. Ayrıca tesadüfi etkiler modelinde, sadece gözlenen örnekteki kesit, birimler ve zamana göre meydana gelen farklılıkların etkisini değil, örnek dışındaki etkileri de dikkate almaktadır.

37 37 … Tesadüfi Etkiler Modeli…  1i tesadüfi değişken olarak alınıp, (8) (5) nolu modelde şeklinde modellenmektedir. anakütle ortalama sabiti olup bilinmeyen parametredir.  i, birey davranışlarındaki bireysel farklılıkları dikkate alan gözlenemeyen tesadüfi hatalardır.  i ’ler birbirlerinden ve e it ’lerden bağımsızdır. Tesadüfi etkiler modeli şu şekilde açıklanır:

38 38 … Tesadüfi Etkiler Modeli… (8) nolu eşitlik (5) nolu modelinde yerine konulursa; (10) (9)

39 39 … Tesadüfi Etkiler Modeli elde edilir. (10) nolu modeldeki ifade hata bileşen modelinin genel biçimidir. “hata bileşen” ifadesi e it +  i teriminden kaynaklanmaktadır. Bu terim iki bileşenden meydana gelmektedir: e it tüm hataları gösterirken,  i, bireysel “spesifik” hata, bireysel farklılıkları ve zamanı sabit tutarak bireyler arasındaki değişmeyi gösterir.

40 40 … Tesadüfi Etkiler Modeli Örneğe dönecek olursak model (R.Kök,N.Şimşek): dört firmanın aynı tür firmaların büyük bir evreninden çekildiği, sabit ortak bir ortalama değerin olduğu ve (  i ), her bir şirketin bireysel farklılıkları hata terimi ile gösterilmektedir. denklemde yerine konur.

41 41 Bu birleşik hata terimi (w it ), iki bileşenden oluşmaktadır.  i :Yatay kesite özgü hata bileşeni ve e it : zaman serisi ile yatay kesitin birleşimi sonucu oluşan hata terimi. Model bu özelliğinden dolayı hata (tesadüfi) bileşen modeli adını almaktadır. … Tesadüfi Etkiler Modeli Burada sabit etkiler modeli ve tesadüfi etkiler modeli arasındaki farka dikkat etmek gerekmektedir.

42 42 Sabit etkiler modelinde her bir yatay kesitin, kendine ait bir sabit değeri (fixed intercept value) vardır. Tesadüfi etkiler modelinde sabiti bütün yatay kesit sabitlerinin ortalama bir değerini yansıtmaktadır. Hata bileşeni  i yatay kesite özgü sabitin bu ortalama değerden( ), rassal sapmalarını göstermektedir.  i doğrudan gözlenemeyen bir değerdir. … Tesadüfi Etkiler Modeli

43 43 … Tesadüfi Etkiler Modeli Dependent Variable: I Method: GLS (Variance Components) Variable Coefficient Std. Error t-Statistic Prob. C CAP PL Random Effects _GE--C _GM--C _US--C _WEST--C GLS Transformed Regression R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Sum squared resid Durbin-Watson stat Unweighted Statistics including Random Effects R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Sum squared resid Durbin-Watson stat

44 44 … Tesadüfi Etkiler Modeli Örneğimizdeki yatırım fonksiyonunun rassal etkiler modeli ile tahmini Eviews ile de yapılabilmektedir. Bu regresyonun bazı özellikleri şöyledir: Birincisi, söz konusu dört şirketin rassal etki değerleri toplandığında sıfır değerini alacaktır. İkincisi, rassal hata bileşeninin ortalama değeri ( ), olarak elde edilmiştir. GE’nin olarak elde edilen değeri (  i ), bize GE’nin rassal hata bileşeninin ortak sabit değerden ne kadar farklı olduğunu göstermektedir.

45 45 Diğer üç değer için de benzer yorum yapılır. Bu sonuçlar, daha önce sabit etkiler modeli ile elde edilen eğim katsayıları ile karşılaştırıldığında, bu katsayıların yalnızca eğim katsayılarının farklı olduğunu varsaydığımız model dışında çok fazla değişmediği görülecektir. … Tesadüfi Etkiler Modeli H 0 :E(ε i| X it )=0 Ülke ve zaman etkileri rassaldır.(ε i ) ile açıklayıcı değişkenler arasında korelasyon yoktur. H 1: E(ε i |X it )≠0 Ülke ve zaman etkileri sabittir.(ε i ) ile açıklayıcı değişkenler arasında korelasyon vardır.

46 46 Sabit Etki ve Tesadüfi Etki Modelleri Seçimi… Eğer panel veride yer alan kesit birimi sayısı fazla ve zaman dönemi(T), kesit verisine ait örnek sayısından (N) kısa ise, rassal etkiler modeli, sabit etkiler modeline göre daha etkin tahminler sağlar. Öte yandan, zaman döneminin sayısı(T) büyük ve kesit verisine ait örnek sayısı(N) de az ise, iki tahmin sonuçları arasında çok az farklılık beklenmekte sabit etkiler modeli daha tercih edilmektedir.

47 47 Hausman Testi … Birim veya birim ve zaman farklılıklarını temsil eden katsayıların yani tesadüfi etkili modelin hata terimi bileşenlerinin modeldeki bağımsız değişkenlerden ilişkisiz olduğu hipotezinin geçerliliği, Hausman tarafından önerilen test istatistiği ile incelenebilmektedir.

48 48 …Hausman Testi … Bu durumda sabit etki model parametre tahmincileri ile tesadüfi etkili modelin parametre tahmincileri arasındaki farkın istatistiksel olarak anlamlı olup olmadığının incelenmesi gerekmektedir. İki model arasında tercih yapabilmek için Hausman test istatistiği kullanılmaktadır.

49 49 …Hausman Testi Hausman test istatistiği “tesadüfi etkiler tahmincisi doğrudur” sıfır hipotezi altında k serbestlik dereceli ki-kare dağılımı göstermektedir. Gerçekleşmesi durumunda tesadüfi etkili modelin hata terimleri bileşenlerinin bağımsız değişkenler ile ilişkili olmadığı kararı verilebilecektir. Bu durumda sabit etkili modeli tercih edilecektir.

50 50 Panel Veri Yaklaşımı İçin Bir Örnek… Örnek uygulama, 1990–2004 yılları arasında Avrupa Birliği çekirdek, üye ve aday 30 ülke için Dünya Bankası Ekonomik Göstergeleri verilerinden derlenmiştir. Telekomünikasyon alt yapı yatırımlarının ekonomik büyümeye etkisini incelemek için oluşturulan model (11) nolu eşitlik ile gösterilmiştir.

51 51 …Panel Veri Yaklaşımı İçin Bir Örnek… Burada i indisi ülkeleri, t indisi de zamanı göstermektedir. v i gözlemlenemeyen zaman etkisi,  it geçiş hata terimidir. (11)

52 52 …Panel Veri Yaklaşımı İçin Bir Örnek… Çalışmada kullanılan değişkenler; KBGSMH: yıllık kişi başına reel GSMH büyüme oranı GSMHt-1: satın alma gücü parametresi ile hesaplanan reel GSMH gecikmesi (Yakınsama hipotezini test etmek için modelde yer almaktadır ve işaretinin yakınsama hipotezini desteklemesi için (-) olması beklenmektedir.)

53 53 …Panel Veri Yaklaşımı İçin Bir Örnek… TUK: GSMH’daki kamu harcamaları oranı (Literatürdeki beklenen işareti hem (-) hem de (+) olabilmektedir.) SBTYAT: GSMH’daki sabit yatırımları (Ekonomik büyüme ve yatırımlar arasında beklenen işaret pozitiftir.) İT-İH: Her bir ülkedeki ihracat ve ithalat toplamıdır. Bu değişken ile global ekonomi içerisinde ülkelerin ne kadar entegre olduğu ölçmektedir. (Ekonomik büyüme ve verimlilikteki etkisi pozitif olması beklenmektedir.)

54 54 …Panel Veri Yaklaşımı İçin Bir Örnek… TEL: Telekomünikasyon alt yapısı yatırımlarını ölçmek amacıyla; her 1000 kişi başına düşen erişim hattıdır. (Telekomünikasyon yatırımları arttıkça ekonomik büyümenin artması beklenmektedir.) PC: Her 1000 kişi başına düşen kişisel bilgisayar sayısıdır.(Bilgisayar kullanımı arttıkça büyüme oranının da artması beklenmektedir. TELKARE: Telekomünikasyon yatırımlarının ölçeğe göre getirisini vermektedir. Negatif ve anlamlı olması, telekomünikasyon yatırımlarının etkisinin büyüklüğü bir önceki seviyesiyle ters ilişkili olduğu ifade etmektedir.

55 55 …Panel Veri Yaklaşımı İçin Bir Örnek… Ekonomik büyümenin belirleyicilerini belirlemek amacıyla elde edilen ilk model Tablo 1 de verilmiştir. Tablo 1 incelendiğinde değişkenlerin istatistiki olarak anlamlı olduğu görülmektedir. Ayrıca tabloda verilen F testi %1 önem seviyesinde anlamlı olup, modelde ülke etkilerinin de olduğunu göstermektedir. Bu ayrıca Tablo 2 Hausman testi sonuçları ile desteklenmektedir. Bununla birlikte her bir ülkenin ayrı ayrı ekonomik büyüme etkileri ise Tablo 3’de verilmiştir.

56 56 …Panel Veri Yaklaşımı İçin Bir Örnek…

57 57 …Panel Veri Yaklaşımı İçin Bir Örnek… Tablo 1 incelendiğinde katsayı işaretlerinin beklentileri karşıladığı söylenebilir. Kişi başına reel GSMH büyüme oranının bir dönem gecikmesinin katsayısı pozitif ve anlamlıdır. Ayrıca GSMH’ın bir dönem gecikmesinin de katsayısı negatiftir. Katsayı işaretinin negatif olması yakınsama hipotezini desteklemektedir.

58 58 …Panel Veri Yaklaşımı İçin Bir Örnek… Çünkü yüksek düzeylerdeki kişi başına GSMH daha az oranda büyümeye neden olmaktadır. GSMH’daki kamu tüketim harcamaları ve yatırımların payının artması büyümeyi olumlu yönde etkilemektedir. Kişisel bilgisayar kullanımı da ekonomik büyümeyi arttırmaktadır. Son olarak 1000 kişi başına düşen erişim hattı katsayısı işaret ve büyülüğü incelendiğinde telekomünikasyon alt yapı yatırımları ile ekonomik büyüme arasında pozitif ve kuvvetli bir ilişki olduğu görülebilmektedir.

59 59 …Panel Veri Yaklaşımı İçin Bir Örnek…

60 60 …Panel Veri Yaklaşımı İçin Bir Örnek… Sabit etki model parametre tahmincileri ile tesadüfi etkili modelin parametre tahmincileri arasındaki farkın istatistiksel olarak anlamlı olup olmadığının incelenmesi için oluşturulan Hausman test sonuçları Tablo 2’de verilmiştir. Hausman Testi incelendiğinde ki-kare değerinin oldukça anlamlı olduğu(H 0 red) ve sabit etki modelinin tercih edilmesi gerektiğini göstermektedir.

61 61 …Panel Veri Yaklaşımı İçin Bir Örnek… Ayrıca her bir ülkenin Türkiye’ye göre ekonomik büyümesini karşılaştırmak amacıyla ülkeler (11) nolu modele kukla değişken olarak eklenmiştir. Tablo 3 sabit etki panel veri modeli kullanılarak ülke etkilerinin ayrıştırılması ile elde edilmiştir. Tablo incelendiğinde Danimarka, Estonya, Hollanda, İrlanda, İsveç, Letonya, Litvanya, Malta, Polonya, Slovakya, Bulgaristan ve Hırvatistan katsayılarının anlamlı oldukları görülmektedir.

62 62 …Panel Veri Yaklaşımı İçin Bir Örnek…

63 63 …Panel Veri Yaklaşımı İçin Bir Örnek…

64 64 …Panel Veri Yaklaşımı İçin Bir Örnek… Son olarak telekomünikasyon yatırımlarının getirisini incelemek amacıyla 1000 kişi başına düşen erişim hattı değişkenin karesi yeni bir değişken olarak (11) nolu modele eklenmiştir (Tablo 4).

65 65 …Panel Veri Yaklaşımı İçin Bir Örnek Tablo 4 incelendiğinde 1000 kişi başına düşen telefon hat uzunluğunun karesi değişkenin işaretinin negatif olması getirinin azaldığını, bir başka deyişle telekomünikasyon yatırımlarının etkisinin büyüklüğünün bir önceki dönemki seviyesiyle ters ilişkili olduğunu göstermektedir.


"PANEL VERİ ANALİZİ. 2 Panel Veri Tanımı … Panel veri; bireyler, ülkeler, firmalar, hanehalkları gibi birimlere ait yatay kesit gözlemlerinin belli bir." indir ppt

Benzer bir sunumlar


Google Reklamları