BİLECİK ŞEYH EDEBALİ ÜNÜVERSİTESİ MÜH. FAKÜLTESİ TERMODİNAMİK

Slides:



Advertisements
Benzer bir sunumlar
Kimyasal Tepkimelerde Hız
Advertisements

MADDE ve ISI.
Termodinamiğin İkinci Yasası ve Entropi
Sıcaklık ve Termodinamiğin Sıfırıncı Kanunu
Bölüm 12 TERMODİNAMİK ÖZELİK BAĞINTILARI
ISI MADDELERİ ETKİLER.
“Tersinir veya tersinmez, bütün çevrimlerde sistem başlangıç durumuna döndüğü için (i=s) sistemin entropi değişimi sıfırdır. Çünkü entropi bir durum fonksiyonudur.
GAZLAR.
Deney No: 6 Reaksiyon Isısının Hesaplanması
ISI NEDİR? Bir maddeyi oluşturan taneciklerin sahip oldukları hareket (kinetik) enerjilerinin toplamına ısı denir. Isı bir enerji türüdür ve ısı enerjisi.
ENERJİ, ENERJİ GEÇİŞİ VE GENEL ENERJİ ANALİZİ
Verim ve Açık Devre Gerilimi
Madde ve Maddenin Özellikleri
Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ
MADDENİN TANECİKLİ YAPISI VE ISI
REAKSİYON ENTALPİSİ (ISISI)
Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ
Chemistry 140 Fall 2002 Termokimya
BÖLÜM 20: İSTEMLİ DEĞİŞME: ENTROPİ VE SERBEST ENERJİ
6.Ünİte Madde ve IsI.
MADDE VE ISI.
ISI ve SICAKLIK.
Kimyasal Tepkimelerde Enerji
ISI VE SICAKLIK Maddeyi oluşturan atom yada moleküller sürekli hareket halindedir. Bu hareket katı maddede denge konumu etrafındaki titreşimler , sıvı.
Su donarken moleküller arasında yeni etkileşimler oluşur; buharlaşırken de yine moleküller arası zayıf etkileşimler ortadan kalkar. Buna karşılık kömür.
Maddenin Tanecikli Yapısı ve Isı
Entalpi - Entropi - Serbest Enerji
Maddenin Tanecikli Yapısı VE Isı
Maddenin tanecikli yapısı
KİMYASAL TERMODİNAMİK KAVRAMLARI
Biyoenerjetikler.
FEN ve TEKNOLOJİ / ISI ve SICAKLIK
BÖLÜM 13 GAZ KARIŞIMLARI.
Kimyasal maddeler. Mol kavramı. Denklem denkleştirme.
9. SINIF KİMYA 24 MART-04 NİSAN.
KİMYASAL REAKSİYON ÇEŞİTLERİ
MADDENİN TANECİKLİ YAPISI VE ISI
Moleküller arası çekim kuvvetleri. Sıvılar ve katılar.
Hafta 5: TERMOKİMYA.
MADDENİN AYIRT EDİCİ ÖZELLİKLERİ
KİMYASAL TEPKİMELER.
Termodinamiğin 2. ve 3. yasaları. Entropi. Serbest enerji.
Termodinamik. Termodinamiğin 0. ve 1. yasaları. Hess yasası.
Çözelti Termodinamiği
Çözelti Termodinamiği
ALTINCI HAFTA Elektrokimya. Faraday yasası. Pil gösterimleri ve elektrot çeşitleri. Elektromotor kuvvet ve endüstriyel piller. 1.
ISI.
Gazlar. Gazların kinetik teorisi. İdeal gaz kanunu.
MADDENİN AYIRT EDİCİ ÖZELLİKLERİ
Kapalı ve Açık Sistemler Arş. Gör. Mehmet Akif EZAN
ISI VE SICAKLIK.
MADDE VE ISI.
Madde ve özellikleri.
KAPALI SİSTEMLERİN ENERJİ ANALİZİ
Kimyasal Reaksiyonların Hızları
ÇÖZÜNÜRLÜĞE ETKİ EDEN FAKTÖRLER
ISI VE SICAKLIK.
MADDENİN AYIRT EDİCİ ÖZELLİKLERİ
İSTEMLİLİK Tabiatta kendiliğinden gerçekleşen olaylara istemli olay denir. Örneğin doğal gazın yanması istemli bir olay iken çıkan CO2 ve H2O gazlarının.
Maddenin Tanecikli Yapısı ve Isı
..
Biyoenerjetik.
MADDENİN ÖZELLİKLERİveTERMODİNAMİK
MADDENİN HALLERİ VE ÖZELLİKLERİ
KAYNAMA ve SÜBLİMASYON
Kimyasal Reaksiyonlar
MADDENİN TANECİKLİ YAPISI ve ISI
Sunum transkripti:

BİLECİK ŞEYH EDEBALİ ÜNÜVERSİTESİ MÜH. FAKÜLTESİ TERMODİNAMİK GENEL KİMYA 2014 1

Termodinamik. Termodinamiğin 0. ve 1. yasaları. Hess Yasası. 2

TERMODİNAMİK Termo: ısı, dinamik: hareket kelimelerinden oluşmuştur. Termodinamik, kimyasal reaksiyonların ısı alışverişini inceleyen bilim dalıdır.

Termodinamikte sıkça kullanılan terimler: Enerji, İş yapabilme yeteneğidir. Sıcaklık, ısının akış yönünün bir göstergesidir. Termodinamikte olayı yaşayan maddelere sistem denir. Reaksiyonlarda sistem bizzat reaksiyona giren kimyasal maddelerdir. Çevre, sistemle temas halinde olan evrenin bir parçasıdır. İç enerji (E), bir sistemin içinde bulunan tüm atomların, iyonların veya moleküllerin enerjilerinin toplamıdır.

Cisimlerin sahip olduğu enerji ölçülmez Cisimlerin sahip olduğu enerji ölçülmez. Sadece birinin diğerine göre enerji farkı ölçülebilir. Termodinamiğin 0. ve I. Kanunu Sıfırıncı yasa iki ayrı cismin bir üçüncü cisimle ısıl dengede olmaları durumunda kendi aralarında da ısıl dengede olacaklarını bildirir. Üçüncü cisim ile ısıl dengededirler.

Termodinamiğin I. kanunu, evrenin enerjisinin sabit olduğunu ifade eder ve bu ifade birkaç değişik şekillerde söylenebilir. Enerji bir halden diğerine dönüşebilir. Fakat kaybolmaz. Enerji yoktan var edilemez, vardan yok edilemez. Bir sistemin enerjisindeki değişme sistem tarafından yapılan işlem sistem tarafından alınan (yada verilen) ısıya eşittir. Isı q, iş de w ile gösterildiğinde sistem ve çevre arasındaki etkileşimde toplam enerji değişimi, E nin matematik ifadesi şöyle olur:

Kimyasal sistemlerde (elektrokimyasal iş hariç) sadece gaz sistemlerde basınç x hacim işi vardır. Bir piston ile sıkıştırılmış bir gaz ısındığı zaman genişler ve dış basınca karşı bir iş yapar.

Entalpi (H) Entalpi, sabit basınçta meydana gelen işlemlerdeki çevre ile alınıp verilmiş ısı miktarına eşittir.

H, sabit basınçta, genellikle açık kaplarda atmosfer basıncında yapılan reaksiyon ısısıdır: E, sabit hacimde, kalorimetre bombasında yapılan reaksiyon ısısıdır.

Standart Oluşma Isıları (Heo) Reaksiyon Isıları Bir reaksiyonun ısısı belirli bir sıcaklık için sabittir. Değişik sıcaklıklarda reaksiyon ısıları da değişir. Bir reaksiyonun reaksiyon ısısı o reaksiyon denkleminin genişletildiği sayı ile çarpımına, bölündüğü sayı ile bölümüne eşit olur. Standart Oluşma Isıları (Heo) 25C (298 K) ve 1 atmosferde belirlenen entalpi değişimine standart entalpi değişimi adı verilir ve H ile gösterilir. Bileşiklerin 298 K de 1 atm de elementlerinden oluşma entalpisine standart oluşma entalpisi denir ve Heo (delta H sıfır elementlerinden oluşma) ile gösterilir.

Bağ enerjisi Bileşiği meydana getiren atomlar arasında çok sağlam bağlar olduğunu biliyoruz. Bu bağların oluşumu esnasında dışarıya verilen enerji, bağları kırmak için verilmesi gereken enerjiye eşittir. Kimyasal bağları kırmak için verilmesi gereken enerjiye bağ enerjisi adı verilir. Bağ kırılması (endotermik) (+) işaretli reaksiyon ısısına sahip bir reaksiyon, bağ oluşumu (ekzotermik)(-) işaretli reaksiyon ısısına sahip bir reaksiyondur.

Yanma Isısı Genellikle oksijenle olan reaksiyonlara yanma reaksiyonları denildiği için reaksiyon ısılarına yanma ısısı (H) adı verilir. Bunlar yakıt olarak kullanılan organik maddelerde bilhassa önemlidir.

Hess Kanunu (Reaksiyon Isılarının Hesaplanması) Birtakım reaksiyon adımlarından geçerek yürüyen bir net reaksiyonun ısısı, ara reaksiyon ısıları bilindiği takdirde hesap yoluyla bulunabilir. Termo- kimyanın bu en önemli buluşu 1840 de Hess tarafından birtakım deneyler sonucunda ortaya konulmuştur. Hess Kanunu bir kimyasal reaksiyonda ilk halden son hale geçişteki reaksiyon ısısı reaksiyonun gidiş yoluna bağlı değildir der. Reaksiyon ister bir adımda tamamlansın, ister birçok ara adımlardan geçerek tamamlansın, reaksiyon ısısı aynıdır şeklinde de ifade edilebilir.

Karbon ve oksijenden karbondioksit oluşumu bir adımda veya iki adımda olabilir.

Reaksiyon Isılarının Ölçülmesi Bir ısının alındığı veya verildiği, sıcaklık değişmesiyle anlaşılır. Sıcaklığının yükselmesi o cismin ısı aldığını sıcaklığının düşüşü de o cismin ısı verdiğini gösterir. Bir cismin son durumundaki sıcaklığıyla ilk andaki sıcaklığı arasındaki fark (T) ısı miktarının hesaplanmasında kullanılır.

Isı kapasitesi Faz geçişlerinin olmadığı sıcaklık aralıklarında spesifik ısı ve molar ısı kapasitesi olmak üzere iki türlü tanımlanır: Spesifik Isı, 1 gram maddeyi 1K veya 1C yükseltmek için gerekli olan ısı miktarıdır (J/Kg): Bu durumda bir cismin aldığı veya verdiği ısı iki farklı şekilde hesaplanabilir: Isı (q) = mol sayısı x molar ısı kapasitesi x T veya Isı(q) = kütle x spesifik ısı x T 2) Molar ısı kapasitesi, bir mol maddeyi 1K veya 1C yükseltmek için gerekli olan ısı miktarıdır. Birimi J/K mol dür.

Kalorimetreler Kalorimetreler reaksiyon ısılarını ölçmeye yarayan aletlerdir. Gerek sabit hacimde (kapalı kaplarda), gerek sabit basınçta (açık kaplarda, atmosfer basıncında) reaksiyon ısıları ölçülerek E veya H deneysel olarak bulunabilir. Her iki halde önce kalorimetrenin ısı kapasitesi deneysel olarak belirlenmelidir. Bunun için elektrikli ısıtıcı ile belirli bir süreyle kalorimetre ısıtılır veya belirli bir sıcaklığa ısıtılmış bir metal çubuk kalorimetreye konarak sıcaklık yükselmesi ölçülür. Bütün mesele bilinen belirli bir miktar ısının kalorimetreye verilerek sıcaklık yükselmesinin ölçülmesidir.

Kalorimetre bombası Kalorimetre bombasında reaksiyon ısıları iç enerji değişmeleri (E) olarak ölçülür.

Çözelti kalorimetreleri Çözelti kalorimetrelerinde reaksiyon açık havada (sabit basınçta) yapıldığından, reaksiyon ısısı, DH olarak ölçülür: DH = qp

Termodinamiğin II. Kanunu. Entropi Kimyacı, kimyasal olayların kendiliğinden olup olmadığı sorusuna cevap aramıştır. Çoğunlukla geçerli olan ekzotermik olaylar kendiliğinden cereyan eder, endotermik olaylar kendiliğinden yürümez kuralı ortaya atılmıştır. İşte termodinamiğin ikinci kanunu, kendiliğinden olma olayını kesinlikle tarif etmek için, entropi ve serbest enerji kavramlarını getirmiştir.

Kendiliğinden olma olayları karışıklığın, düzensizliğin karmaşanın en yüksek olduğu yöne doğru ilerler. Evrenin düzensizliği daima artmaktadır. İşte bu düzensizlik, karışıklık miktarı entropi olarak tarif edilmektedir. Entropi büyük S harfi ile gösterilir. Entropi de her bir sistem için net olarak hesaplanamaz ancak sistemin son hali ile ilk hali arasındaki entropi farkı miktarı olarak ölçülebilir.

Entropinin artışına ve azalışına neden olan olaylardan bazılarını şöyle sıralayabiliriz: Entropinin artışına sebep olan olaylar Entropinin azaldığı olaylar Sıcaklık artışı Sıcaklık azalışı Bir katının erimesi Bir sıvının soğutulması Bir sıvının buharlaşması Bir gazın yoğunlaştırılması Aynı fazda iki maddenin karıştırılması Bir gazı daha küçük hacme koyma Bir sıvıda bir gaz veya katının çözünmesi Bir reaksiyonda gaz mol sayısının azalması Bir gazın genişlemesi Toplam mol, atom, iyon sayısının azalması

Termodinamiğin III. Kanunu. Mutlak Entropiler İç enerji ve entalpinin sadece E ve H olarak değişimleri hesaplanabilmekte iken hem entropi değişimi hem de mutlak entropi hesaplanabilmektedir. Bu kolaylığı bize termodinamiğin üçüncü kanunu verir. Termodinamiğin üçüncü kanunu, mükemmel bir kristalin mutlak sıfır noktasındaki entropisi sıfırdır der.

0 K de mükemmel kristal olan F2 nin standart entropisinin (S298) bulunması.

Kimyasal Reaksiyonlarda Entropi Değişimi Belirli bir sıcaklıkta gerçekleşen bir kimyasal reaksiyonun entropi değişimi ürünlerin entropisi ile başlangıç maddelerinin entropisi farkına eşittir. Entalpi değişimlerinde olduğu gibi entropi değişimleri de sadece son hal ile ilk hale bağlıdır. Reaksiyonun geçtiği yollara bağlı değildir. Hess Kanunu entropi değişimlerine de uygulanabilir.

Serbest Enerji Fiziksel olaylarla kimyasal olayların kendiliğinden olup olamayacağı hususunun tahmin edilmesi hakkında kaba olarak ekzotermik reaksiyonlar kendiliğinden olur diyorduk. İkinci ve biraz daha kesin tahminimiz entropi artışı olursa reaksiyon kendiliğinden olur demiştik. Böylece hem entropi artışı olan ve hem de aynı zamanda dışarıya ısı veren (ekzotermik) reaksiyonlar kesinlikle kendiliğinden yürür diyebiliriz. Fakat ekzotermik olmadığı halde entropi artışı olan ve ekzotermik olup entropi artışı göstermeyen reaksiyonların kendiliğinden olup olamayacağını söyleyemeyiz. 1876 da J.W.Gibbs bunu açıklığa kavuşturmuştur.

1876 da J.W.Gibbs bir reaksiyonun kendiliğinden olup olmadığı hakkında kesin bir bilgi veren Gibbs serbest enerjisi bağıntısını bulmuştur: Bu bağıntıya göre G hesaplanır ve bulunan değere bakılarak reaksiyonun kendiliğinden yürüyüp yürüyemediği belirlenir: G < 0 reaksiyon kendiliğinden olur. G > 0 reaksiyon kendiliğinden olmaz. G = 0 reaksiyon dengededir.