TUĞBA TAŞOLUK İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ

Slides:



Advertisements
Benzer bir sunumlar
3/A SINIFI.
Advertisements

1 . ÜNİTE : GEOMETRİK ŞEKİLLER
YENİ MATEMATİK Cisim Atölyesi
GEOMETRİK CİSİMLER.
GEOMETRİK CİSİMLER IŞIL ÖNCEL.
PRİZMATİK YÜZEYLER Düzlemsel bir çokgene dayanan ve bu çokgenin düzlemini tek noktada kesen sabit bir doğruya paralel olarak kayan bir doğrunun oluşturduğu.
GEOMETRİK CİSİMLER.
GEOMETRİK CİSİMLER S.BAYHAN.
DİK PRİZMALARIN ÖZELLİKLERİ
TEMEL DİKKLİK KAVRAMI E d k O Düzlemde G F E n m d B p Uzayda.
Kazanımlar : Geometrik Cisimler
Çokgenler ve açıları.
GEOMETRİK CİSİMLERDE DÖNME HAREKETİ
Bu slaytımızda PİRAMİT hakkında bilgiler izleyeceğiz.
GEOMETRİ.
Geometrik Cisimler.
GEOMETRİK CİSİMLER.
GEOMETRİK CİSİMLER.
KATI CİSİMLERİN ALAN VE HACİMLERİ
DİK PRİZMALARIN YÜZEY ALAN BAĞINTILARI HAZIRLAYAN:SÜMEYYE TAŞTEPE
GEOMETRİK CİSİMLER VE ÖZELLİKLERİ
CİSİMLERİN YÜZEYLERİ.
DİKDÖRTGEN Dikdörtgenler prizması şeklindeki cisimlerin yüzeyleri dikdörtgensel bölgedir. Dikdörtgensel.
Grup prizmatik Hazırlayanlar Sibel Güler - Fatma Akfırat Binnur Sancak Palaz - Volkan Tay Prizmatik.
DİK PRİZMALAR Tabanları birbirine eş herhangi bir çokgen ve yan
N  3 ve n N olmak üzere düzlemde yalnız A1, A2, A3, … , An noktalarında kesişen ve herhangi ardışık üç noktası doğrusal olmayan [A1A2], [A2A3], …, [An-1An],
GEOMETRİK CİSİMLERİN SİMETRİLERİ
GEOMETRİK CİSİMLER.
BİR DÜZLEM İLE BİR GEOMETRİK CİSMİN ARA KESİTİNİ BELİRLEME
PRİZMAYI İNŞA EDER, TEMEL ELEMANLARINI BELİRLER
KÜP 1- 8 KÖŞESİ VARDIR 2-12 AYRITI ( KENARI) VARDIR
ÜÇGEN, KARE, DİKDÖRTGEN VE ÇEMBER MODELLERİ sibelogretmen.com.
MEHMET GÖK 2/B SINIFI ÖĞRETMENİ
YENİ MATEMATİK Cisim Atölyesi
FATMA ALTAY Matematik A
PRİZMALARIN YÜZEY ALAN BAĞINTILARI
DİK PİRAMİDİN HACİM BAĞINTISI
PİRAMİT, KONİ VE KÜRE Bu slayt 8.sınıf düzeyindeki öğrencilere, matematik dersi ünite 4 konusu anlatımı için düzenlenmiştir.
DİK PRİZMALAR.
DİKDÖRTGENLER PRİZMASI
PRİZMALAR.
Rize Üniversitesi Eğitim Fakültesi Özge Kurtgöz
GEOMETRİK CİSİMLER ABDULLAH AYDEMİR
KATI CİSİMLERİN ALAN VE HACİMLERİ
GENEL TEKRAR 2.DÖNEM
Geometrik Cisimler PİRAMİT.
PRİZMALAR.
GEOMETRİK CİSİMLER.
GEOMETRİ ÖZEL DÖRTGENLER.
ÇOKGENLER VE DÖRTGENLER
ÖĞRETİM TEKNOLOJİLERİ VE MATERYAL TASARIMI DERSİ ÖDEVİ
Geometrik cisimler Semboller: cm2, m2 Emine çil
GEOMETRİK CİSİMLER.
DİK PRİZMALARIN ALAN ve HACİMLERİ
ÜÇGEN KARE DİKDÖRTGEN.
YÜZEY :Cisimlerin hava ile temas eden bölümlerine yüzey denir.
DİKDÖRTGENLER PRİZMASI KARE PRİZMA VE KÜPÜN HACMİ
Uzayda Kapalı Yüzeyler
ÇOK YÜZLÜLER VE ARAKESİTLERİ: Çok yüzlüler, tüm yüzleri ve tüm ayrıtları eş olan düzgün cisimlerdir. Bu cisimlere PLATONİK CİSİMLER denir. Bütün yüzleri.
KARE DİKDÖRTGEN VE ÜÇGEN
KARŞIMDA KARE DİKDÖRTGEN VE ÜÇGEN
PRİZMALAR VE PİRAMİTLER
GEOMETRİK CİSİMLER VE ÖZELLİKLERİ
ÜÇGENLER VE DÖRTGENLER 1 . ÜÇGENLER 2 . DÖRTGENLER.
5.Sınıf GEOMETRİK CİSİMLER Düzenleyen : Ömer TÖK.
ÜCRETSİZ VE ÖZGÜN ETKİNLİKLER
GEOMETRİK CİSİMLER VE ŞEKİLLER
Prizma Nedir? Birbirine eşit ve paralel iki düzlemin köşelerinin birleşmesi sonucu elde edilen cisme prizma denir.
KATI(GEOMETR İ K) C İ S İ MLER MATEMATİK PROJE SLAYTI M.AŞKIN ERDOĞAN
Sunum transkripti:

TUĞBA TAŞOLUK 20110957009 İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ PRİZMALAR TUĞBA TAŞOLUK 20110957009 İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ

PRİZMA Tabanların karşılıklı köşelerini birleştiren ayrıtları tabana dik ise dik prizma, eğik ise eğik prizma adını alır.

Prizmaların özellikleri Prizmanın elemanları; tabanlar, yan yüzler, ayrıt, köşe ve yüksekliktir. Prizmanın yüksekliği ( tabanlar arasındaki uzaklık), tabanlarından birinin herhangi noktasından diğer tabanına inilen dikmedir. Dik prizmanın yan yüzleri dikdörtgensel bölgeler, eğik prizmanın yan yüzleri ise paralelkenarsal bölgelerdir.

Prizmalar tabanlarına göre adlandırılır. Tabanları birbirine paralel üçgensel bölge olan prizmaya üçgen prizma denir.

ÜÇGEN PRİZMA VE DİKDÖRTGEN PRİZMA

Üçgen dik prizma Tabanlar : üçgensel bölge Yan yüzler : dikdörtgensel bölge Taban sayısı : 2 Yan yüz sayısı : 3 Toplam Yüz sayısı: 5 Köşe sayısı : 6 Ayrıt sayısı : 9

Tabanlar : karesel bölge Kare dik prizma Tabanlar : karesel bölge Yan yüzler : dikdörtgesel bölge Taban sayısı : 2 Yan yüz sayısı : 4 Toplam yüz sayısı : 6 Köşe sayısı : 8 Ayrıt sayısı : 12

Dikdörtgenler prizması Tabanlar : dikdörtgensel bölge Yan yüzler : dikdörtgesel bölge Taban sayısı : 2 Yan yüz sayısı : 4 Toplam yüz sayısı : 6 Köşe sayısı : 8 Ayrıt sayısı : 12

Düzgün altıgen dik prizma Tabanlar : altıgensel bölge Yan yüzler :dikdörtgensel bölge Taban sayısı : 2 Yan yüz sayısı :6 Toplam yüz sayısı : 8 Köşe sayısı : 12 Ayrıt sayısı : 18

Yandaki beşgen prizmasına göre aşağıdaki boşlukları doldurunuz. Tabanlar :…………………………… Yan yüzler :……………………… Taban sayısı :………………….. Yan yüz sayısı :…………………. Toplam yüz sayısı :…………………… Köşe sayısı :…………………………….. Ayrıt sayısı :………………………………

Prizmaların açınımları Üçgen dik prizma

Kare dik prizma açınımı

Dikdörtgenler prizması

Beşgen prizma

Düzgün altıgen prizma

ÜÇGEN PRİZMA Yanal alan: 𝑌 𝐴 = 𝐴 1 + 𝐴 3 + 𝐴 5 = a.h+b.h+c.h = h(a+b+c) = taban çevresi . yükseklik Taban alan: 𝑇 𝐴 = 𝐴 2 = 𝐴 4 = 𝑐. ℎ 1 2

= taban alan . yükseklik Yüzey alan: A= 𝐴 1 + 𝐴 2 + 𝐴 3 + 𝐴 4 + 𝐴 5 = 𝑌 𝐴 + 2.𝑇 𝐴 = h(a+b+c) + 2.( 𝑐.ℎ 1 2 ) = h(a+b+c) + 𝑐.ℎ 1 Hacim: V= 𝑇 𝐴 .h = ( 𝑐.ℎ 1 2 ).h = taban alan . yükseklik

DİKDÖRTGEN PRİZMA Yanal alan: 𝑌 𝐴 = 𝐴 1 + 𝐴 3 + 𝐴 5 + 𝐴 6 = b.c + a.c + b.c + a.c = c(a + b + a + b) = c(2a + 2b) = taban çevresi . yükseklik Taban alan: 𝑇 𝐴 = 𝐴 2 = 𝐴 4 = a.b

Yüzey alan: A= 𝐴 1 + 𝐴 2 + 𝐴 3 + 𝐴 4 + 𝐴 5 + 𝐴 6 = 𝑌 𝐴 +2. 𝑇 𝐴 = c(2a + 2b) + a.b Hacim: V= 𝑇 𝐴 .h = a.b.h = taban alan . yükseklik

KARE PRİZMA Yanal alan: 𝑌 𝐴 = 𝐴 1 + 𝐴 3 + 𝐴 5 + 𝐴 6 = a.h + a.h + a.h + a.h = 4a.h = taban çevresi . yükseklik Taban alan: 𝑇 𝐴 = 𝐴 2 = 𝐴 4 = a.a = 𝑎 2

Yüzey alan: A= 𝐴 1 + 𝐴 2 + 𝐴 3 + 𝐴 4 + 𝐴 5 + 𝐴 6 = 𝑌 𝐴 + 2. 𝑇 𝐴 =4ah + 2. 𝑎 2 Hacim: V= 𝑇 𝐴 .h = 𝑎 2 .h

KÜP Alan: A= 6 𝑎 2 Hacim: V= 𝑎 3

Yukardaki geometrik cismin iki farklı açınımı çizilmiştir. İnceleyelim Sizde kare dik prizmanın farklı açınımlarını çiziniz.

UYGULAMA 1) Aşağıdaki ifadeden doğru olanın baş tarafına “D”, yanlış olanlarınkine “Y” yazınız. …….. Prizmalar tabanlarına göre adlandırılır. …….. Üçgen prizmanın 6 köşesi vardır. …….. Üçgen prizmanın 6 ayrıtı vardır. …….. Yan ayrıtları tabanlarına dik olmayan prizma eğik prizmadır. …….. Düzgün altıgen prizmanın 12 ayrıtı vardır. …….. Bir prizmanın yüksekliği iki tabanı arasındaki en kısa uzaklıktır.

2) Aşağıdaki boşlukları doldurunuz. Bütün yüzleri dikdörtgensel bölge olan prizmaya ………….. ad verilir. Prizmanın taban alanı ile yüksekliğinin çarpımı, prizmanın ………… verir. Eşkenar üçgen dik prizmanın hacmini veren bağıntı ………….