Hesaplanan Parametrelerin Hassasiyeti ve Güvenirlik Bölgesi
Güvenirlik Bölgesi b2 b1 a b Doğrusal y = b1 +b2x b1 c d Doğrusal Olmayan y = q1 [1-exp(q2x)] q2 q1 q1
Farklı x değerleri için y değerleri toplanıp, parametreler tayin edildi varsayalım. Başka bir veri seti oluşturup aynı şeyi yaptığınızda bu sefer aynı x değerleri için farklı y değerleri elde edilecektir. Bunu birkaç kez tekrar ettiğimizde ise birçok parametre çifti oluşacaktır. Oluşan parametre çiftleri için bir güvenirlik bölgesi oluşturulur. b2 b1 Güvenirlik Bölgesi
Eğer oluşan alan darsa bu parametrelerin hassasiyetine işaret eder Eğer oluşan alan darsa bu parametrelerin hassasiyetine işaret eder. Ayrıca hangi parametredeki hassasiyetin daha fazla olduğu da grafikten görülebilir. Örneğin b’de b2’nin hassasiyeti b1’den daha büyüktür. Genelde ölçüm sayısı arttıkça güvenilirlik bölgesi daralır. Doğrusal olmayan modeller için ölçümün yapıldığı aralık da önemlidir. Örneğin d)’deki gibi uzamış uçlar, deneylerin bilgi verici olmayan bir aralıkta yapılmasından kaynaklanabilir.
İki Parametreli Doğrusal Modelde Parametrelerin Hassasiyetini Hesaplama s2 s2 ile tahmini olarak hesaplanabilir. Parametre sayısı Kalanların karelerinin ortalaması
Parametrelerin Güvenilirlik Aralığı Güvenilir parametre bölgesi eliptiktir. %100(1-a)’lik güvenirlik bölgesinin tam veren elipsin denklemi aşağıdaki gibidir.
Ortalama Yanıtın Güvenilirlik Aralığı Belli bir x0 değerinde hesaplanan ortalama y değerinin güvenilirlik aralığı: Gelecekte hesaplanacak tek bir x değerine karşılık gelen tahmin edilen y’nin güvenilirlik aralığı ise:
Örnek, Doğrusal Model Bir HPLC cihazına ait kalibrasyon verisi aşağıda verilmiştir. Veri y = b0+b1x modeline uydurulmuş ve ilgili istatistik Tablo 26.2’de verilmiştir. Uydurulan doğru denklemi y = 0.566 +139.759x. Parametre b0 ve b1 için %95’lik güvenirlik aralığını belirtiniz. Sistemin ortalama yanıtı n0 için x =0.2’deki güvenirlik aralığı nedir? Gelecekteki xf= 0.2’de kaydedilen tek bir gözlem için güvenirlik aralığı nedir?
Excel’de Araçlar/veri çözümleme/regresyon
1 2 3 t13,0.025=2.16.
Güvenirlik Bölgesi Elipsi F2,13,0.05 = 3.8056 s2 = 1.194 bo = 0.567 b1 = 139.758 Sxi = 1.972 Sxi2 = 0.40249
Tahmin Edilen Değerdeki Güvenirlik Aralığı b) x = 0.2 c) xf = 0.2
Gelecekteki ölçümler için %95’lik güvenirlik aralığı Ortalama için %95’lik güvenirlik aralığı
Doğrusal Olmayan Model, Bakteri Büyüme Modeli Si (mg/l KOİ) 28 55 83 110 138 mi (1/sa) 0.053 0.060 0.112 0.105 0.099 Monod model veriye uydurulmak isteniyor: S: Substrat konsantrasyonu (mg/lKOİ, BOİ, TOC, vs. m: Mevcut substrat konsantrasyonundaki büyüme hızı mmax: maksimum büyüme hızı Ks : Doymuşluk sabiti
Doğrusal Olmayan Model Parametreleri Parametreler: mmax ve Ks Doğrusal olmayan regresyon da yapabilen bir programla veri bu modele uydurulur. SPSS, SYSTAT, MATLAB veya ORIGİN kullanılabilir. mmax = 0.153 /sa Ks = 55.4 mg/l
Origin’de
Doğrusal Olmayan Modeller Doğrusal olmayan modeller için parametrelerin hassasiyeti kalanların karelerinin toplamı (SR) yüzeyinde sınırlıdır. Karelerin toplamının kritik değeri: Sc= p hesaplanan parametre sayısı, n gözlem sayısı, n-p serbestlik derecesi olup s2=SR/(n-p) s2’nin tahmini değeri olarak kullanılmaktadır. Lineer olmayan modeller için genelde kesin güvenilirlik seviyesi bilinmediğinden Sc ile belirlenen ortak güvenilirlik alanı tam olarak 1-a olmayıp bunun yaklaşık değeridir. Çünkü s2=SR/(n-p) artık s2’nin yansız tahmini değeri değildir.
Doğrusal Olmayan Modeller Örnek veri için SR = 0.00079, n=5, p=2, F2,3,0.05=9.55. Bu ortak güvenilirlik bölgesi denmesinin nedeni iki parametrenin de dikkate alınmasıdır. Eğer bu 5 gözlemin yapıldığı bölgede çok geniş sayıda veri toplamış olsaydık tahmin edilen parametre çiftleri bu ortak güvenilirlik bölgesinin içinde yer alacaktı. Bölgenin büyüklüğü parametrelerin ne kadarlık bir hassasiyetle belirlendiğinin ölçüsünü verir. Veriyi iyi bir şekilde yansıtan bir model için bu bölgenin sınırlı ve küçük olmasını bekleriz. Örnek veri için aşağıda görüldüğü gibi bu güvenilirlik bölgesi aşırı büyük. q2 500’e yaklaştığında bile alan kapanmıyor. Bu da parametrelerin kötü bir şekilde tayin edildiğini gösteriyor.
Sağdaki büyük alan hassasiyetin düşük olduğunu gösteriyor Sağdaki büyük alan hassasiyetin düşük olduğunu gösteriyor. Bu demek ki tahmin edilen değerlere fazla güvenemeyiz.
Hassasiyet Nasıl Artırılır? Güvenirlik alanının şekli ve büyüklüğü üç faktöre bağlıdır. 1. Ölçüm hassasiyetine 2. Yapılan ölçüm sayısına 3. Bağımsız değişkenin seçildiği aralığa 2 ve 3’e kıyasla 1 fazla değiştirilemez. 2 Genellikle bağımsız değişkenin seçildiği noktalar ile ölçüm sayısı değiştirilebilir. Monod örneği için yüksek substrat seviyesinde bir kaç ölçüm daha yapılarak (n = 7) güvenirlik alanı küçültülebilir. Veya n=5 olarak kalır ancak daha yüksek bir S konsantrasyonunda bir ölçüm yapılarak da parametrelerin hassasiyeti artırılabilir.
5 Orijinal + 2 Yeni Nokta Orijinal 5 nokta artı yüksek substrat konsantrasyonlarında 2 nokta daha
4 Orijinal Nokta +1 Yeni Orijinal 4 Nokta +Yüksek Substratta yapılan 1 nokta daha
Doğrusal Olmayan Modeller Parametrelerin hassasiyetinin büyüklüğünün hesabı matlabda: