OLASILIK DAĞILIMLARI Bu kısımda teorik olasılık dağılımları incelenecektir. Gerçek hayatta birçok olayın dağılımı bu kısımda inceleyeceğimiz çeşitli olasılık dağılımları ile benzerlik gösterir. Bu durum söz konusu olaylarla ilgili araştırmalarda kolaylıklar sağlamakta, problemlerin çözümünde teorik olasılık dağılımlarının kullanılmasını mümkün hale getirmektedir. Mesela doğal olayların dağılımı genellikle normal dağılıma uyar. Kişilerin, uzunluğu, ağırlığı, kan basıncı vs böyledir. Elektronik cihazların güvenilirliği (bir cihazın arıza yapmaksızın çalışma süresinin dağılımı) Weibull veya üstel dağılıma uyar. Bir üretim hattında üretilen kusurlu mamullerin dağılımı Poisson dağılımına uyar. Bir işin tamamlanma zamanının belirlenmesinde (Pert) Beta dağılımı kullanılmaktadır. Bu tür örnekleri çoğaltmak mümkündür.
1. Bernoulli Dağılımı Bernoulli dağılımı rassal bir deneyin sadece iyi- kötü, olumlu-olumsuz, başarılı-başarısız, kusurlu-kusursuz gibi sadece iki sonucu varsa kullanılan bir dağılımdır. Bir deneyin sadece iki sonucu varsa bu deneye Bernoulli deneyi adı verilir. Bernoulli deneyinde iki sonuç vardır. Deneyin sonuçlarından biri uygun durum olup başarı olarak ifade edilir ve x=1 olarak gösterilir. Diğer hal uygun olmayan durum olup başarısızlık olarak adlandırılır ve x=0 ile gösterilir. Deneyin başarılı sonuçlanma olasılığı p ile gösterildiğinde Bernoulli dağılımı şöyle formüle edilir. Bernoulli dağılımının tek bir parametresi p başarı olasılığıdır.
Bernoulli Dağılımının beklenen değer ve varyansı Bernoulli dağılımının beklenen değeri (aritmetik ortalaması) Bernoulli dağılımının varyansı
1. Bernoulli Dağılımı Örnek: Bir sporcunun yaptığı müsabakada kazanma olasılığı 0,8 kaybetme olasılığı ise 0,2 olarak verilmiştir. Bu sporcu için Olasılık fonksiyonunu yazınız, Sporcunun beklenen (ortalama) kazanma olasılığı ve varyansını bulunuz. Çözüm a) b)
2. Binom Dağılımı Olasılık dağılımları içersinde en yaygın kullanılan dağılımlardan biridir. Deneylerin tekrarlanabildiği durumlarda kullanılır. Bir deney n kez tekrarlandığında belli bir olay x defa meydana geliyorsa bu olayın olasılığı BİNOM dağılımı yardımı ile bulunur. Binom dağılımı aşağıdaki varsayımlara dayanmaktadır. 1) Her deney birbirlerinin karşılıklı olarak engelleyen iki mümkün halden sadece birinde meydana gelmektedir. Mümkün hallerden biri uygun hal (x) diğeri uygun olmayan hal (n-x) olarak ifade edilir. 2) Bir uygun halin olasılığı (p) her deneyde aynıdır. Uygun olmayan halin olasılığı (q=1-p) içinde aynı durum söz konusudur.(seçim iadeli) 3) Deneyler bağımsızdır. Yani bir deneyde ister uygun ister uygun olmayan hal meydana gelsin bu durum diğer deneydeki uygun bir halin olasılığına etki etmez.
2. Binom Dağılımı Binom dağılımının olasılık fonksiyonu N deneyde uygun halin x defa meydana gelme olasılığı Binom dağılımı n (deney sayısı) ve p (uygun hal olasılığı) olmak üzere iki parametreye dayanmaktadır. Örnek: a) Bir para ile yapılan 5 atışta 2 yazı gelmesi olasılığı ne olur? b) En az 2 yazı gelmesi olasılığı ne olur?
2. Binom Dağılımı Örnek: Herhangi bir öğrencinin bir dersten geçme olasılığı 0,7 dir. Rasgele seçilen 10 öğrenciden a) 4 ünün dersini geçmesi olasılığı b) En az 3 ünün dersi geçmesi olasılığı c) En fazla 8’inin dersten geçmesi olasılığı ne olur? d) X: Başarılı öğrenci sayısı olmak üzere X in olasılıklarını P(X=x)=f(x) bularak olasılık fonksiyonunun grafiğini çiziniz. Çözüm
2. Binom Dağılımı d) Başarılı öğrenci say Olasılık 5,9E-06 1 0,000138 2 0,001447 3 0,009002 4 0,036757 5 0,102919 6 0,200121 7 0,266828 8 0,233474 9 0,121061 10 0,028248
Binom Dağılımı Örnek n veya p’nin her farklı değeri farklı bir dağılım gösterdiğinden, Binom dağılımı gerçekte bir dağılımlar gurubu teşkil eder. p=0,5 olduğu zaman dağılım simetrik bir şekil alır. (n)’in değeri önemli değildir. p’nin aldığı değere göre dağılımın şekli değişir. p<0,5 ten küçük ise dağılım sağa çarpık, p>0,5 olduğunda ise çarpıklık sola doğru olmaktadır. Yukarıdaki örnekte p>0,5 olduğundan grafikten de görüldüğü gibi dağılım sola çarpık olmuştur.
Binom dağılımının beklenen değeri Binom olasılık fonksiyonu: Beklenen değer: n-1=m, x-1=y dersek n=m+1, x=y+1 olur. Buradan n-x=m-y olur
Binom dağılımının varyansı Var(X) = E(X2) – [E(X)]2 olduğuna göre E(X2) hesaplanır. Varyans:
2. Binom Dağılımı Bir işletmede çalışan işçilerin işe geç kalma oranının %15 olduğu bildirilmiştir. Bu işletmede çalışan işçilerden 20 tanesi rastgele seçildiğinde; a) 4 tanesinin işe geç kalmış olma olasılığı ne olur? b) En az 3 tanesinin işe geç kalmış olma olasılığı ne olur? c) 20 işçi için işe geç kalan işçi sayısının beklenen değer ve varyansı ne olur? d) Yukarıdaki şıklardan bağımsız olarak rastgele seçilen 10 işçiden en az birinin işe geç kalma olasılığı 0,85 olduğuna göre işletmede işe geç kalma oranı ne olur tahmin ediniz.