Bir rijit cisme etki eden kuvvetler iki gruba ayrılabilir: (1) dış kuvvetlet(anılan rijit cismin üzerine diğer rijit cisimlerin uyguladığı kuvvetleri temsil.

Slides:



Advertisements
Benzer bir sunumlar
Week 4 – “-de” suffix RECALL: A: _____ nerede? B: _____ altında. Nerede? (Where?) A: _____ nerede? B: _____ evde. (…at home) OR: tell the location using.
Advertisements

FORM 3 USE OF THE PRESENT CONTINUOUS TENSE • a)Bu tense ile temel olarak içinde bulunduğumuz anda yapmakta olduğumuz eylemleri anlatırız. Zamanı.
Fatih ve Eğitimde Teknoloji Kullanımı
DesignCAD Pro 2000 DesignCAD Pro 3000 DesignCAD 3D MAX İleri Tüm Hakları Saklıdır. İzinsiz kopyalanamaz. (C) Copyright, MAYOR 2001 Orta Seviye Eğitimi.
Copyright © 2014, Anadolu Sigorta. Tüm hakları saklıdır. Profitability Challange in Casco – Putting Demand into Work İstanbul,
Gerekli olduğunda insanlara ulaşın Yer Uzantıları Reach prospective customers at important moment with location extensions. Location Extentions.
Alakalı müşterileri hedefleyin. Google ile Yeniden Pazarlama Remarketing with Google. Target customers who are already showing interest in your business.
SALES OF PERSONAL PROPERTY. Commercial sales Installment sales Sales by sample DOMESTIC LAW TURKISH CODE OF OBLIGATIONS, 6098 (Swiss Law) TURKISH COMMERCIAL.
    SiMETRi SiMETRi.
6. Surfaces and Surface Modeling
FUTURE PERFECT CONTINUOUS WILL + HAVE + BEEN +V ING a)Gelecekte bir eylemi ne kadar zamandır yapıyor olacağımızı ifade eder By next year,
ETKİN OKUMA. ETKİN NOT ÇIKARMA KAYNAK Trakya Çevre Düzeni Planı Raporu, İstanbul: ….., ALINTI – NOT OSB’nin toplam kapasitesinin %...’ı boş. Sf.28.
Google Display Network Targeting options.
Future Tense Will&Going to.
Simetrik olmayan (Eğik) Eğilme Unsymmetric Bending
Some Turkish Proverbs December, Ankara. Aç ayı oynamaz ( The hungry bear doesn’t dance) : When someone is hungry, h/she is unwilling to do anything.
The Solution of Linear Systems (Doğrusal Sistemlerin Çözümü, AX=B )
Bilgisayar Grafiğine Giriş
Copyright © AKAMPUS Kampüs Bilişim Sistemleri ve Danışmanlık A.Ş. Copyright © İDTM A.Ş. İstanbul Dünya Ticaret Merkezi A.Ş.
GENETICS THE SCIENCE OF HEREDITY. HEREDITY AND MENDEL GENETICS 1. TRAIT:2. HEREDITY:
Kesme kuvveti-Kayma gerilmesi-Kayma akımı-Kayma merkezi
AS IF / AS THOUGH.
Logical Design Farid Rajabli.
ÖRNEK-1 F=180 kN ‘luk kuvvet etkisi altında kalacak olan b=140mm ve s=12mm boyutlarındaki St50 levhalar, St 44 malzemeden 22 mm çapındaki perçinler ile.
İŞ SIRALAMA VE ÇİZELGELEME DERS 5
2007 / 2008 ÖĞRETİM YILI I. DÖNEM LİSE 10 FEN SINIFI FİZİK DERSİ 1. YAZILI SINAVI (1) Ad: Soyadı: Okul no: Tarih: Sınav notu: x-x +y -y F1F1 F3F3.
DEVRE TEOREMLERİ.
Bu proje Avrupa Birliği ve Tu ̈ rkiye Cumhuriyeti tarafından finanse edilmektedir. Technical Assistance for Increasing Primary School Attendance Rate of.
SÜLEYMAN DEM İ REL PRIMARY AND SECONDARY SCHOOL. GENERAL INTRODUCTION SCHOOL DIRECTORY, TEACHERS AND OTHER STAFF CLASSROOMS PARTS OF THE SCHOOL GALLERY.
COSTUMES KILIKLAR (KOSTÜMLER)
Gizli / İsimsiz Raporlama Tanıtımı
BM-305 Mikrodenetleyiciler Güz 2015 (6. Sunu) (Yrd. Doç. Dr. Deniz Dal)
 C H I L D B R I D E S.   Marriages in early ages are seen all over the world.  Marriages under 18 are accepted as «child» marriages.
S ÜLEYMAN Ş AH ÜN İ VERS İ TES İ DERS KAYIT İŞ LEMLER İ / COURSE REGISTRATION PROCESS.
Environmental pollution Traffic Infrastructural problems Unconscious employee Urbanization and industrialization Lack of financial sources.
There was a man who was thinking of building an honourable structure that could last for milleniums and show the king’s power. So, he racked his brain.
BOĞAZLAYAN HALK EĞİTİM MERKEZİ INSTITUTUL POSTLICAL PHOENIX htttp:// NEWHAM COLLEGE OF FURTHER.
Improvement to Rankine cycle
THE PROJECT SPORT AND US “Non-OLYMPIC GAMES”. FIVE STONES.
This is beak. There are feet. There are wings. There are eyes. This is tongue.
CHILD PORNOGRAPHY IŞIK ÜNİVERSİTESİ
Students social life and join the social clubs. BARIŞ KILIÇ - EGE DÖVENCİ IŞIK ÜNİVERSİTESİ
BİLİMSEL ÇALIŞMA BASAMAKLARI SCIENTIFIC WORKING STEPS MHD BASHAR ALREFAEI Y
LEFM and EPFM LEFM In LEFM, the crack tip stress and displacement field can be uniquely characterized by K, the stress intensity factor. It is neither.
Ac POWER ANALYSIS Part III..
FINLAND EDUCATION SYSTEM I am talking about the Finnish education system today.
Future: I will/shall & I am going to. Structure: Subject+will/shall+verb(base form)+object.
ETwinning Nedir?. Türkiye’de 81 ilin katılımıyla yürütülen 1.Projemiz.
MAKİNA TEORİSİ II STATİK KUVVET ANALİZİ Prof.Dr. Fatih M. Botsalı.
Döngüler ve Shift Register
NİŞANTAŞI ÜNİVERSİTESİ
MAKİNA TEORİSİ II GİRİŞ Prof.Dr. Fatih M. Botsalı.
NİŞANTAŞI ÜNİVERSİTESİ
Relations between angles and sides.. Examples and meaning Larger angles longer side If two angles in a tringle have unequal measures then the sides opposite.
BİLL GATES Şule Eslem ÖZTÜRK NUN OKULLARI Prep-A.
Chapter 5 – Balancing of accounts
Imagine that you are a teacher and you are taking your 20 students to England for the summer school.
DÜZLEMSEL MEKANİZMALARIN
According to string theory, every substance in the universe consists of one thing. These strings, which vibrate in different channels, create everything.
What is dna? Mrs. Fletcher – Oct
802.1CBdb draft text contribution
SUBJECT NAME Prepeared by Write the names of group members here
People with an entrepreneurial mindset are always brave.
NİŞANTAŞI ÜNİVERSİTESİ
Examples: In the Figure, the three points and coordinates are given that is obtained with CAD program. If these three points are represented by the curve.
Core Competencies Communication - Critical Thinking - Creative Thinking - Positive Personal & Cultural Identity - Personal Awareness & Responsibility.
Bilgisayar Grafiğine Giriş CS 351. Bilgisayar Grafiği Nedir? ● Geometrik şekillerin Üretilmesi, İşlenmesi ve Depolamasıdır. ● Cisimlerin bilgisayar ekranında.
Sunum transkripti:

Bir rijit cisme etki eden kuvvetler iki gruba ayrılabilir: (1) dış kuvvetlet(anılan rijit cismin üzerine diğer rijit cisimlerin uyguladığı kuvvetleri temsil eder) F F’ ve (2) iç kuvvetler (rijit cismi meydana getiren parçacıkları bir arada tutan kuvvetleri temsil eder) Bölüm 3 RİJİT CİSİMLER: Eşdeğer Kuvvet Sistemleri

kuvvetin kaydırılabilme ilkesine göre, bir rijit cisim üzerine etkiyen bir dış kuvvetin etykisi, kuvvet etki çizgisi üzerinde hareket ettirilirse, değişmez. Bir rijit cisme iki farklı noktada etki eden iki kuvvetin, eğer şiddetleri, yönleri ve etki çizgileri aynı ise, etkileri aynıdır. Bu, iki kuvvet sisteminin eşdeğer olduğu şeklinde ifade edilir. F F’

q V = P x Q P Q İki vektörün vektörel çarpımı şu şekilde tarif edilir. V = P x Q Elde edilen vektör V, P ve Q vektörlerinin oluşturduğu düzleme diktir, ve şiddeti ise, V = PQ sin  ile verilir V vöktörünün ucundaki bir kişi için, P den Q ya doğru saat yönünün tersine doğru bir dönme gözlenir. P, Q ve V vektörleri Sağ el kuralına göre tarif edilmiş bir sistem oluştururlar. Buradan, Q x P = - (P x Q) yazılabilir.

ik j It follows from the definition of the vector product of two vectors that the vector products of unit vectors i, j, and k are i x i = j x j = k x k = 0 i x j = k, j x k = i, k x i = j, i x k = - j, j x i = - k, k x j = - i The rectangular components of the vector product V of two vectors P and Q are determined as follows: Given P = P x i + P y j + P z k Q = Q x i + Q y j + Q z k The determinant containing each component of P and Q is expanded to define the vector V, as well as its scalar components

P = P x i + P y j + P z k Q = Q x i + Q y j + Q z k V = P x Q = iPxQxiPxQx jPyQyjPyQy kPzQzkPzQz = V x i + V y j + V z k Öyleki, V x = P y Q z - P z Q y V y = P z Q x - P x Q z V z = P x Q y - P y Q x

O d A F MoMo r The moment of force F about point O is defined as the vector product M O = r x F where r is the position vector drawn from point O to the point of application of the force F. The angle between the lines of action of r and F is .  The magnitude of the moment of F about O can be expressed as M O = rF sin  = Fd where d is the perpendicular distance from O to the line of action of F.

x y z Fx iFx i Fz kFz k Fy jFy j x ix i y jy j z kz k O A (x, y, z ) r Bir F kuvvetinin oluşturduğu M o momentinin kartezyen bileşenleri, r x F ifadesinin determinantının açılımı ile belirlenir.. M o = r x F = ixFxixFx jyFyjyFy kzFzkzFz = M x i + M y j + M z k Yani, M x = y F z - z F y M y = zF x - x F z M z = x F y - y F x

x y Fx iFx i Fz kFz k Fy jFy j O r En genel halde, herhangi bir A noktasına uygulanan bir F kuvvetinin, herhangi bir B noktasına göre momenti şunu yazabiliriz: M B = r A/B x F = ixA/BFxixA/BFx jyA/BFyjyA/BFy kzA/BFzkzA/BFz Öyleki, z B (x B, y B, z B ) A (x A, y A, z A ) r A/B = x A/B i + y A/B j + z A/B k ve x A/B = x A - x B y A/B = y A - y B z A/B = z A - z B

x y Fx iFx i F Fy jFy j O M B = (x A - x B )F y - (y A - y B ) F x z B A (x A - x B ) i rA/BrA/B (y A - y B ) j In the case of problems involving only two dimensions, the force F can be assumed to lie in the xy plane. Its moment about point B is perpendicular to that plane. It can be completely defined by the scalar M B = M B k The right-hand rule is useful for defining the direction of the moment as either into or out of the plane (positive or negative k direction).

 P Q The scalar product of two vectors P and Q is denoted as P Q,and is defined as The scalar product of P and Q is expressed in terms of the rectangular components of the two vectors as P Q = PQ cos  P Q = P x Q x + P y Q y + P z Q z where  is the angle between the two vectors

x y z O L A xx P zz yy The projection of a vector P on an axis OL can be obtained by forming the scalar product of P and the unit vector  along OL. P OL = P Using rectangular components, P OL = P x cos  x + P y cos  y + P z cos  z

The mixed triple product of three vectors S, P, and Q is S (P x Q ) = SxPxQxSxPxQx SyPyQySyPyQy SzPzQzSzPzQz The elements of the determinant are the rectangular components of the three vectors.

x F O The moment of a force F about an axis OL is the projection OC on OL of the moment M O of the force F. This can be written as a mixed triple product. z A (x, y, z) y MOMO L C r xxFxxxFx yyFyyyFy zzFzzzFz M OL =  M O =  (r x F) = x, y, z = direction cosines of axis OL x, y, z = components of r F x, F y, F z = components of F

d F - F M Two forces F and - F having the same magnitude, parallel lines of action, and opposite sense are said to form a couple. The moment of a couple is independent of the point about which it is computed; it is a vector M perpendicular to the plane of the couple and equal in magnitude to the product Fd.

Two couples having the same moment M are equivalent (they have the same effect on a given rigid body). x y z d F - F x y z O O M (M = Fd) x y z O MxMx MyMy MzMz M

Any force F acting at a point A of a rigid body can be replaced by a force-couple system at an arbitrary point O, consisting of the force F applied at O and a couple of moment M O equal to the moment about point O of the force F in its original position. The force vector F and the couple vector M O are always perpendicular to each other. O A r F O A F MOMO

O A1A1 r1r1 F1F1 O M1M1 r2r2 A2A2 F2F2 r3r3 A3A3 F3F3 F1F1 M2M2 M3M3 F2F2 F3F3 R M RORO O Any system of forces can be reduced to a force-couple system at a given point O. First, each of the forces of the system is replaced by an equivalent force-couple system at O. Then all of the forces are added to obtain a resultant force R, and all of couples are added to obtain a resultant couple vector M O. In general, the resultant force R and the couple vector M O will not be perpendicular to each other. R R

O A1A1 r1r1 F1F1 r2r2 A2A2 F2F2 r3r3 A3A3 F3F3 R M RORO O Rijit cisimler dikkate alındığı sürece, iki kuvvet sistemi, F 1, F 2, F 3..., ve F’ 1, F’ 2, F’ 3..., sadece ve sadece aşağıdaki şartlar altında eşdeğerdirler:  F =  F’ ve  M o =  M o ’

O A1A1 r1r1 F1F1 r2r2 A2A2 F2F2 A3A3 F3F3 R M RORO O This is the case for systems consisting of either (a) concurrent forces, (b) aynı düzlemdeki kuvvetler, veya (c) paralel kuvvetler. If the resultant force and couple are directed along the same line, the force-couple system is termed a wrench. R If the resultant force R and the resultant couple vector M O are perpendicular to each other, the force-couple system at O can be further reduced to a single resultant force.