Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

6. Surfaces and Surface Modeling

Benzer bir sunumlar


... konulu sunumlar: "6. Surfaces and Surface Modeling"— Sunum transkripti:

1 6. Surfaces and Surface Modeling
ME 521 Computer Aided Design 6. Surfaces and Surface Modeling Dr. Ahmet Zafer Şenalp Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü

2 GYTE-Makine Mühendisliği Bölümü
Types od Surfaces 6. Surfaces and Surface Modeling Analytical Surfaces Primitive surfaces Plane surface Offset surface Tabulated cylinder Surface of revolution Swept surface Ruled surface Synthetic Surfaces Coons patches Bilinear surface Bicubic surface Bezier surface B-spline surface NURBS surface Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

3 x=x(u,v),y=y(u,v),z=z(u,v) p(u,v) = [x(u,v) y(u,v) z(u,v)]T
Surface Patch 6. Surfaces and Surface Modeling A surface patch ⎯ a curved bounded collection of points whose coordinates are given by continuous, two-parameter, single-valued mathematical expression. Parametric representation: p = p(u,v) x=x(u,v),y=y(u,v),z=z(u,v) p(u,v) = [x(u,v) y(u,v) z(u,v)]T Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

4 GYTE-Makine Mühendisliği Bölümü
Surface Patch 6. Surfaces and Surface Modeling v Isoparametric curves u Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

5 GYTE-Makine Mühendisliği Bölümü
Surface Patch 6. Surfaces and Surface Modeling v=1 n(ui,vj) - u=ui v=vj p(ui,vj) - v=0 Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

6 GYTE-Makine Mühendisliği Bölümü
Analytical Surfaces 6. Surfaces and Surface Modeling Primitive surfaces Plane surface Offset surface Tabulated cylinder Surface of revolution Swept surface Ruled surface Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

7 GYTE-Makine Mühendisliği Bölümü
Primitive Surfaces 6. Surfaces and Surface Modeling Plane: P(u, v) = u i + v j + 0 k Cylinder: P(u, v) = R cos u i + R sin u j + v k Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

8 GYTE-Makine Mühendisliği Bölümü
Primitive Surfaces 6. Surfaces and Surface Modeling • Plane P(u, v) = u i + v j + 0 k • Cylinder P(u, v) = R cos u i + R sin u j + v k • Sphere P(u, v) = R cos u cos v i + R sin u cos v j + R sin v k • Cone P(u, v) = m v cos u i + m v sin u j + v k • Torus P(u, v) = (R + r cos v) cos u i + (R + r cos v) sin u j + r sin v k Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

9 GYTE-Makine Mühendisliği Bölümü
Planar Surface 6. Surfaces and Surface Modeling Defined by 3 points and 3 vectors Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

10 GYTE-Makine Mühendisliği Bölümü
Planar Surface 6. Surfaces and Surface Modeling Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

11 GYTE-Makine Mühendisliği Bölümü
Offset Surface 6. Surfaces and Surface Modeling Offset yönü Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

12 Curve is projected along a vector
Tabulated Cylinder 6. Surfaces and Surface Modeling Curve is projected along a vector In most CAD software it is called as “extrusion” Vector Surface generation curve Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

13 GYTE-Makine Mühendisliği Bölümü
Surface of Revolution 6. Surfaces and Surface Modeling Revolve curve about an axis Curve Axis Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

14 GYTE-Makine Mühendisliği Bölümü
Surface of Revolution 6. Surfaces and Surface Modeling When a planar curve is revoled around the axis with an angle v a circle is constructed (if v=360 ). Center is on the revolving axis and rz(u) is variable. Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

15 GYTE-Makine Mühendisliği Bölümü
Swept Surface 6. Surfaces and Surface Modeling Defining curve swept along an arbitrary spine curve Spine Defining curve Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

16 GYTE-Makine Mühendisliği Bölümü
Ruled Surface 6. Surfaces and Surface Modeling Linear interpolation between two edge curves Created by lofting through cross sections Lines are used to connect edge curves There is no restriction for edge curves It is a linear surface Edge curve 2 Edge curve 1 Linear interpolation Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

17 GYTE-Makine Mühendisliği Bölümü
Ruled Surface 6. Surfaces and Surface Modeling Edge curves: G(u) ve Q(u) C1(u)=G(u) C2(u)=Q(u) Ruled surce only permits slope in the direction of curves in u direction. Surface has zero slope in v direction. Ruled surface cannot be used to model surfaces that have slopes in 2 directions. Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

18 GYTE-Makine Mühendisliği Bölümü
Synthetic Surfaces 6. Surfaces and Surface Modeling Coons patches Bilinear surface Bicubic surface Bezier surface B-spline surface NURBS surface Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

19 Linearly Blended Coons Surface
6. Surfaces and Surface Modeling p01 D1 C0 p11 C1 v p00 D0 u p10 Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

20 Linearly Blended Coons Surface
6. Surfaces and Surface Modeling Surface is defined by linearly interpolating between the boundary curves Simple, but doesn’t allow adjacent patches to be joined smoothly Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

21 Linearly Blended Coons Surface
6. Surfaces and Surface Modeling Most of the surface algorithms use finite number of points to model surface. However Coons surface patch uses interpolation method with infinite number of points. Coons surface seeks P(u,v) function that will fill between 4 edge curves. Bilineer Coons patch form: Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

22 Linearly Blended Coons Surface
6. Surfaces and Surface Modeling The fom given above does not satisfy the boundary conditions as shown below. Here below is a corrrection surface With the application of correction surface; elde edilir ve bu form sınır koşullarını sağlar. Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

23 Linearly Blended Coons Surface
6. Surfaces and Surface Modeling In the above matrix left column is P1(u,v), middle column is P2(u,v), right column is P3(u,v)’dir. –1, 1-u, u, 1-v, and v functions are called blending functions, because they blend boundary curves to form one surface. For cubic blending functions the form given below is valid: Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

24 Linearly Blended Coons Surface
6. Surfaces and Surface Modeling Coons surface can be used by using ruled surfaces. Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

25 GYTE-Makine Mühendisliği Bölümü
Bilinear Surface 6. Surfaces and Surface Modeling A bilinear surface is derived by interpolating four data points, using linear equations in the parameters u and v so that the resulting surface has the four points at its corners, denoted; P00, P10, P01, ve P11. P0v = (1-v)P00 + vP01 P1v = (1-v)P10 + vP11 Similarly P(u, v) can be obtained by using P0v ve P1v : P(u, v) = (1-u)P0v + uP1v By replacing P0v and P1v into P(u, v): Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

26 GYTE-Makine Mühendisliği Bölümü
Bilinear Surface 6. Surfaces and Surface Modeling Advantage: To supply 4 corner points is enough Limitations: Bilinear surface is flat Surfaces generally form iin flat form Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

27 GYTE-Makine Mühendisliği Bölümü
Bicubic Patch 6. Surfaces and Surface Modeling As blending functions are not linear unlike bilinear surfaces it is possible to model nonlinear surface forms Extension of cubic curve 16 unknown coefficients - 16 boundary conditions Tangents and “twists” at corners of patch can be used Like Lagrange and Hermite curves, difficult to work with Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

28 GYTE-Makine Mühendisliği Bölümü
Bicubic Patch 6. Surfaces and Surface Modeling Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

29 GYTE-Makine Mühendisliği Bölümü
Bicubic Patch To find 16 coefficients in C matrix 16 boundary conditions are necessary. These are: 4 corner points 8 tangent vectors at corner points (in u and v directions at eaach point ) 4 twist vectors at corner points Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

30 GYTE-Makine Mühendisliği Bölümü
Bicubic Patch 6. Surfaces and Surface Modeling The twist vector at a point on a surface measures the twist in the surface at the point. It is the rate of change of the tangent vector Pu with respect to v or Pv with respect to u or it is the cross (mixed) derivative vector at the point. The normal to a surface is another important analytical property. The surface normal at a point is a vector which is perpendicular to both tangent vectors at the point. And the unit normal vector is given by: Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

31 GYTE-Makine Mühendisliği Bölümü
Bicubic Patch 6. Surfaces and Surface Modeling The Hermite bicubic surface can be written in terms of the 16 input vectors: ; Hermite matrix ; geometri ya da sınır koşulu matrisi Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

32 GYTE-Makine Mühendisliği Bölümü
Bicubic Patch 6. Surfaces and Surface Modeling P(u,v) equation can be further expressed as: The second order twist vectors Puv are difficult to define. The Ferguson surface (also called the F-surface patch) is a bicubic surface patch with zero twist vectors at the patch corners. Thus, the boundary matrix for the F-surface patch becomes: Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

33 Bicubic Patch 6. Surfaces and Surface Modeling
F-yüzey yaması This special surface is useful in design and machining applications. Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

34 GYTE-Makine Mühendisliği Bölümü
Bicubic Patch 6. Surfaces and Surface Modeling • Advantages – Boundary curves are Hermite curves – Interior points can be controlled • Disadvantages –What should be the twist factor? It is not esay to sense the effect of twist vector(Ferguson pacth twist vector is 0). – Cannot be used with high order polynomials. Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

35 Bicubic Patch Example:
6. Surfaces and Surface Modeling Parametric bicubic surface is defined in terms of cartesian components: u=1/2, v=1 noktasındaki teğet vektörleri nelerdir? Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

36 Bicubic Patch Example:
6. Surfaces and Surface Modeling To find the tangent vectors it is necesary to differentiate with respect to u and v: (s=1/2,t=1) noktasında Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

37 GYTE-Makine Mühendisliği Bölümü
Bezier Surfaces 6. Surfaces and Surface Modeling Bezier curves can be extended to surfaces Same problems as for Bezier curves: no local modification possible smooth transition between adjacent patches difficult to achieve Parametric space Cartesian space Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

38 GYTE-Makine Mühendisliği Bölümü
Bezier Surfaces 6. Surfaces and Surface Modeling Bezier Surfaces: Two sets of orthogonal Bezier curves can be used to design an object surface. A tensor product Bezier surface is an extension for the Bezier curve in two parametric directions u and v: P(u, v) is any point on the surface and ij P are the control points. These points form the vertices of the control or characteristic polyhedron. Curves are formed, when u is constant v changes in [0..1] when v is constant u changes in [0..1] Like in Beziér curves Bin(u) and Bjm(v) n. ve m. degree Bernstein polynomials. Generally n=m=3: cubic Beziér patch is used. (4x4=16 control points; Pi,j is necessary.) Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

39 GYTE-Makine Mühendisliği Bölümü
Bezier Surfaces 6. Surfaces and Surface Modeling P(u, v) is apoint on the surface and Pij are control points. These points form the control polygon’s vertex points. Below figure shows cubic Bezier patch. When n=3 and m=3 is placed in Bezier equation then Bezier patch equation becomes: Parametric space Cartesian space Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

40 GYTE-Makine Mühendisliği Bölümü
Bezier Surfaces 6. Surfaces and Surface Modeling Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

41 GYTE-Makine Mühendisliği Bölümü
Bezier Surfaces 6. Surfaces and Surface Modeling A 3rd degree Bezier surface defined with 16 control points: Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

42 GYTE-Makine Mühendisliği Bölümü
Bezier Surfaces 6. Surfaces and Surface Modeling Open and closed Bezier surface examples Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

43 GYTE-Makine Mühendisliği Bölümü
B-Spline Surfaces 6. Surfaces and Surface Modeling As with curves, B-spline surfaces are a generalization of Bezier surfaces The surface approximates a control polygon Open and closed surfaces can be represented Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

44 GYTE-Makine Mühendisliği Bölümü
B-Spline Surfaces 6. Surfaces and Surface Modeling A tensor product B-spline surface is an extension for the B-spline curve in two parametric directions u and v. For n=m=3, the equivalent bicubic formulation of an open and closed cubic B-spline surface can be derived as below. Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

45 GYTE-Makine Mühendisliği Bölümü
B-Spline Surfaces 6. Surfaces and Surface Modeling where [P] is an (n +1)×(m +1) matrix of the vertices of the characteristic polyhedron of the B-spline surface patch. For a 4×4 cubic B-spline patch: Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

46 GYTE-Makine Mühendisliği Bölümü
B-Spline Surfaces 6. Surfaces and Surface Modeling B-Spline surface example Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

47 GYTE-Makine Mühendisliği Bölümü
NURBS 6. Surfaces and Surface Modeling NURBS surface (Non-Uniform Rational B-Spline surface) is a generilization to Bézier and B-splines surfaces. NURBS is used widely in computer graphics in CAD applications. A NURBS surface is a parametric surface defined with its degree. Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

48 GYTE-Makine Mühendisliği Bölümü
NURBS 6. Surfaces and Surface Modeling Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

49 GYTE-Makine Mühendisliği Bölümü
Triangular Patches 6. Surfaces and Surface Modeling In triangulation techniques, three parameters u, v and w are used and the parametric domain is defined by a symmetric unit triangle The coordinates u, v and w are called “barycentric coordinates.” While the coordinate w is not independent of u and v (note that u+v+w=1 for any point in the domain) Cartesian space Parametric space Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

50 GYTE-Makine Mühendisliği Bölümü
Triangular Patches 6. Surfaces and Surface Modeling A triangular Bezier patch is defined by: For example, a cubic triangular patch is; Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

51 GYTE-Makine Mühendisliği Bölümü
Triangular Patches 6. Surfaces and Surface Modeling For n=4, the triangular patch is defined as; Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

52 GYTE-Makine Mühendisliği Bölümü
Triangular Patches 6. Surfaces and Surface Modeling Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

53 GYTE-Makine Mühendisliği Bölümü
Free Form Surface 6. Surfaces and Surface Modeling Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

54 GYTE-Makine Mühendisliği Bölümü
Sculptured Surface 6. Surfaces and Surface Modeling General surface form Composed of united surface pieces Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü

55 GYTE-Makine Mühendisliği Bölümü
Subdivision Surface 6. Surfaces and Surface Modeling New points are added between control points by interpollation to obtain a fine surface Dr. Ahmet Zafer Şenalp ME 521 GYTE-Makine Mühendisliği Bölümü


"6. Surfaces and Surface Modeling" indir ppt

Benzer bir sunumlar


Google Reklamları