Hafta 01: Veri (Yrd.Doç.Dr. Levent AKSOY)

Slides:



Advertisements
Benzer bir sunumlar
Uygun Hipotezin Kurulması, Tip I Hata ve Tip II Hata
Advertisements

Bölüm 5 Örneklem ve Örneklem Dağılımları
Kİ-KARE TESTİ Uygulama amacına ve durumuna göre Ki-Kare Testi üç başlık altında incelenir; Ki-Kare Uygunluk Testi Ki-Kare Bağımsızlık Testi Ki-Kare Homojenlik.
HİPOTEZ TESTLERİ.
Hafta 10: Sürekli Rassal Değişkenler (Yrd.Doç.Dr. Levent AKSOY)
İstatistik eİKT-203 Hafta 04: Permutasyon, Kombinasyon, Olasılık
Hafta 07: Kesikli Değişkenler (Yrd.Doç.Dr. Levent AKSOY)
İstatistik Kavramı İstatistik; kesin olmayışlığın ışığı altında karar verme tekniğidir. Ana kitle hakkında örneklem yardımıyla tahmin çalışmalarıdır. Kitle.
Hafta 03: Verinin Numerik Analizi (Yrd.Doç.Dr. Levent AKSOY)
İstatistikte Temel Kavramlar
Hafta 02: Verinin Görsel Analizi (Yrd.Doç.Dr. Levent AKSOY)
Yard. Doç. Dr. Serkan ŞENDAĞ MAKÜ 2012, BURDUR
İstatistikte Bazı Temel Kavramlar
İSTA 201 YAŞAMIN HER ANINDA KARAR VERMEK ZORUNDAYIZ. KARARLARI VERİRKEN SAHİP OLDUĞUMUZ BİLGİLERİ DÜŞÜNCE SÜRECİNDEN GEÇİRİREK SONUCA VARIRIZ. SAHİP OLDUĞUMUZ.
Tablo & Grafik Yapım Yöntemleri.
Frekans Dağılımı ve Grafikleme
VERİLERİN DERLENMESİ VE SUNUMU
SÜREKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK YOĞUNLUK FONKSİYONLARI
Merkezi Eğilim (Yer) Ölçüleri
Örnekleme Yöntemleri Şener BÜYÜKÖZTÜRK, Ebru KILIÇ ÇAKMAK,
İstatistik I İstatistiğin Anlamı: İstatistik kelimesinin çeşitli anlamları vardır. Her türlü kuruluşça ülke geneli veya ülkenin daha küçük bir bölümü hakkında.
1 İSTATİSTİK. 2 Kavramlar ve Sayısal Bilginin Özetlenmesi İstatistik nedir? Tanımlar İş Hayatındaki Önemi Sayısal Bilginin Özetlenmesi Anakütle — Örneklem.
1 İSTATİSTİK. 2 İstatistik Nedir? Tanım 1: İstatistik bilimi, verilerin toplanması, düzenlenmesi, özetlenmesi, takdimi, analizi ve bu analizler aracılığıyla.
Hafta 08: Binom Dağılımı (Yrd.Doç.Dr. Levent AKSOY)
21 - ÖLÇME SONUÇLARI ÜZERİNE İSTATİSTİKSEL İŞLEMLER
Hafta 05: Olasılık Kuramı (Yrd.Doç.Dr. Levent AKSOY)
Hafta 06: Olasılık Kuramı (Yrd.Doç.Dr. Levent AKSOY)
SÜREKLİ ŞANS DEĞİŞKENLERİ
İSTATİKSEL KAVRAMLAR İstatistik Doç. Dr. Şakir GÖRMÜŞ SAÜ| e-FEK.
Biyoistatistiğe Giriş: Temel Tanımlar ve Kavramlar
İstatistik ve Biyoistatistiğe Giriş: Temel İstatistiksel Kavramlar
OLASILIK İstatistik Doç. Dr. Şakir GÖRMÜŞ SAÜ.
DEĞİŞKEN TİPLERİ ve SPSS’ de VERİTABANI HAZIRLANMASI.
NEDEN İSTATİSTİK? 1.
Sıklık Tabloları ve Tek Değişkenli Grafikler
İstatistik 1.Bölüm EĞITSEL YAZıLıM GELIŞTIRME VE DEĞERLENDIRME.
İki Değişkenli Tablo ve Grafikler
ÖĞRENME AMAÇLARI İki değişken arasındaki “ilişki” ile neyin kastedildiğini öğrenmek Farklı yapıdaki ilişkileri incelemek Ki-kare analizinin uygulandığı.
Sayısal Tanımlayıcı Teknikler
ÖĞRENME AMAÇLARI Veri analizi kavramı ve sağladığı işlevleri hakkında bilgi edinmek Pazarlama araştırmalarında kullanılan istatistiksel analizlerin.
Bilişim Teknolojileri için İşletme İstatistiği
Bilişim Teknolojileri için İşletme İstatistiği
İstatistik Bilimine Giriş
Uygulama 3.
Maliye’de SPSS Uygulamaları Doç. Dr. Aykut Hamit Turan SAÜ İİBF/ Maliye Bölümü.
Görsel ve Tablo Teknikleri
Bilişim Teknolojileri için İşletme İstatistiği Yrd. Doç. Dr. Halil İbrahim CEBECİ B.
Araştırma evreni ve Örnekleme
Herhangi bir konuyu incelemek amacıyla çalışmanın/araştırmaların planlanmasını, verilerin toplanmasını, değerlendirilmesini ve bir karara varılmasını sağlayan.
İSTATİSTİKTE TAHMİN ve HİPOTEZ TESTLERİ İSTATİSTİK
İstatistik Sunum.
Tacettin İnandı Olasılık ve Kuramsal Dağılımlar 1.
OLASILIK ve İSTATİSTİK
OLASILIK ve İSTATİSTİK BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU.
1 Sayısal Data’nın Sunumu. 2 Data Sunumu Özet Tablo Nokta Grafik Pasta Grafik Sayısal Data Sunumu Çubuk Grafik Nitel Data Gövde&Yaprak Gösterim Frekans.
ARAŞTIRMA YÖNTEM ve TEKNİKLERİ
Merkezi Eğilim Ölçüleri
VERİLERİN DERLENMESİ VE SUNUMU
İSTATİSTİKTE TEMEL KAVRAMLAR
ANLAM ÇIKARTICI (KESTİRİMSEL) İSTATİSTİK
Veri Düzenleme Grafiksel Gösterimler ve Merkezi Eğilim Ölçüleri
İSTATİSTİĞE GİRİŞ.
HİPOTEZ TESTLERİ.
Tıp Fakültesi UYGULAMA 2
İstatistik Ders Notları.
ÖDE5024 DAVRANIŞ BİLİMLERİNDE İSTATİSTİK Yüksek Lisans
1.Hafta Haftalık Çizelge Temel Kavramlar SPSS’ e giriş
Istatistik I Sinem Yalgın.
Sunum transkripti:

Hafta 01: Veri (Yrd.Doç.Dr. Levent AKSOY) İstatistik eİKT-203 Hafta 01: Veri (Yrd.Doç.Dr. Levent AKSOY)

Dersin Amacı Bu dersin amacı Temel istatistik kavramlarını ve uygulamalarını incelemektir. Dersin sonunda öğrencilerin problemlere uygun yöntemi uyarlayabilmeleri ve çözümünü bulabilmeleri beklenir. Bu derste Verinin Görsel Özetlenmesi, Tanımlayıcı İstatistikler; Temel Olasılık Hesabı; Kesikli ve Sürekli Rassal Değişkenler ve Olasılık Fonksiyonları ile Örneklem Dağılımı konuları işlenir. eİKT 203 – İstatistik Hafta: 01 – Giriş

Ders Kitabı İşletme ve İktisat için İstatistik, Paul Newbold (çev. Ümit Şenesen), Literatür İşletme İstatistiğinin Temelleri, Bowerman-O’Connel-Murphee-Orris (Ed. Neyran Orhunbilge), Nobel İstatistik - Sayıların Arkasının Anlamı, Ümit Şenesen, Literatür eİKT 203 – İstatistik Hafta: 01 – Giriş

Konular Verinin görsel özetlenmesi ve histogram. Ortalama, standart sapma ve diğer tanımlayıcı istatistikler. Kombinasyon, Permutasyon ve Olasılık. Olasılık kuramı. Kesikli rassal değişkenler. Sürekli rassal değişkenler. Normal dağılım. Örneklem dağılımı eİKT 203 – İstatistik Hafta: 01 – Giriş

Belirsizlik Altında Karar Alma Kararlarımızın çoğu eksik bilgiyle alınır. Örnek: Mezun olunca iş piyasası nasıl olacak? Borsa yükselecek mi? Döviz, faiz ne olacak? İstatistik veriyi işleme, özetleme, inceleme ve yorumlamamıza yarayan araçlardır. eİKT 203 – İstatistik Hafta: 01 – Giriş

Anahtar Kavramlar Ana Kütle (Popülasyon): İlgilenilen ya da incelenen nesnelerin tamamından oluşur (N ile gösterilir). Örnek: Popülasyonun gözlenen alt kümesidir (n ile gösterilir). Parametre: Popülasyonun belirli bir özelliğidir. İstatistik: Örneğin belirli bir özelliğidir. eİKT 203 – İstatistik Hafta: 01 – Giriş

Ana Kütle – Örnek Popülasyon Örnek Popülasyondan hesaplanan değerlere parametre denir. Örnekten hesaplanan değerlere istatistik denir. eİKT 203 – İstatistik Hafta: 01 – Giriş

Popülasyonlara Örnek Bir ülkedeki tüm seçmenler. İstanbul’da yaşayan tüm ailelerin geliri. Maltepe Üniversitesi’ndeki tüm öğrencilerin GNO’sı. İstanbul borsasındaki tüm hisselerin ortalama getirisi. eİKT 203 – İstatistik Hafta: 01 – Giriş

Rastgele Örneklem Basit Rastgele Örneklem Popülasyonun üyelerinin seçilmesinin tamamen şansa bağlı olduğu, Popülasyonun her üyesinin seçilme şansının eşit olduğu, Örneğin n üyesinden her birinin seçilme şansının eşit olduğu bir seçme yöntemidir. Bu şekilde oluşturulan örneğe de rastgele örnek denir. eİKT 203 – İstatistik Hafta: 01 – Giriş

Sistematik Örneklem Sistematik örneklem için Popülasyon üyeleri konuyla ilişkili olmayacak şekilde sıralanır; Örneğin popülasyona oranında (j=N/n olacak şekilde) Popülasyonun her j üyesinden biri seçilir; İlk nesneyi 1’den j’ye kadar rastgele seçin. Oluşan örneğe sistematik örnek denir. eİKT 203 – İstatistik Hafta: 01 – Giriş

Sistematik Örneklem (devam) 96 Elemandan (N=96) oluşan bir popülasyondan 6 elemanlı (n=6) bir örnek alacağınızı varsayalım. j = N / n = 96/ 6 = 16 1’den 16’ya kadar olan sayılardan rastgele bir sayı seçin; bu sayı örneğin 10 olsun; bu sizin ilk örneğinizdir. Daha sonra her 10. elemanı seçin Örnek kümesi ={10., 26., 42., 58., 74., ve 90. elemanlar} eİKT 203 – İstatistik Hafta: 01 – Giriş

Tanımlayıcı ve Çıkarımsal İstatistikler Temel olarak istatistikler ikiye ayrılır: Veriyi sayısal olarak işleyen ve özetleyen Tanımlayıcı (Betimleyici) İstatistikler. Veriyi tahmin ve karar almaya destek için kullanan Çıkarımsal İstatistikler. eİKT 203 – İstatistik Hafta: 01 – Giriş

Tanımlayıcı İstatistikler Veriyi topla örn. Anket Veriyi sun örn. Tablo ve Grafik Veriyi özetle örn. Örnek ortalaması eİKT 203 – İstatistik Hafta: 01 – Giriş

Çıkarımsal İstatistikler Tahmin Örneğin ortalama kilosunu kullanarak popülasyonun ortalama kilosunu tahmin etmek Hipotez Testi Popülasyon ortalama kilosunun 75 kg’ın üzerinde olup olmadığını sınamak. Çıkarım örnek sonuçlarına dayanarak popülasyon hakkında tahminde bulunmak ya da karar verme sürecidir. eİKT 203 – İstatistik Hafta: 01 – Giriş

Değişkenlerin Sınıflandırılması Veri Kategorik Numerik Kesikli Sürekli Örnekler: Evlilik durumu Göz rengi Ehliyet sahipliği (Tanımlanmış kategoriler ve gruplar) Örnekler: Çocuk sayısı Bir paketteki kırıklar (Sayılabilir nesneler) Örnekler: Ağırlık Hacim (Ölçülebilir özellikler) eİKT 203 – İstatistik Hafta: 01 – Giriş

Ölçüm Seviyeleri Oran Verisi Aralık Verisi Sıralama Verisi Anlamlı farklar ve mutlak sıfır mevcut. Oran Verisi Niceliksel Veri Ölçümler arasındaki fark anlamlı ancak mutlak sıfırdan bahsedilemez Aralık Verisi Sıralı Kategori (rütbe, sıra, derece, ölçek) Sıralama Verisi Niteliksel Veri Kategori (sıralama veya yön yok) Nominal Veri eİKT 203 – İstatistik Hafta: 01 – Giriş

Verinin Grafik Sunumu Veriyi ham hali ile karar almada kullanmak genellikle zordur. Bir miktar düzenleme gerekir Tablo Grafik Kullanılacak grafik verinin cinsine bağlıdır. eİKT 203 – İstatistik Hafta: 01 – Giriş

Verinin Grafik Gösterimi Sık kullanılan grafik tekniklerinden örnekler Kategorik Değişkenler Numerik Değişkenler Frekans dağılımı Çapraz tablo Çubuk grafik Pasta grafiği Pareto diyagramı Çizgi grafik Frekans dağılımı Histogram ve ogive Dal-yaprak gösterimi Dağılım grafiği eİKT 203 – İstatistik Hafta: 01 – Giriş

Kategorik Verilerin Gösterimi: Tablolar ve Grafiker Tablolandırılmış Veri Grafiklendirilmiş Veri Frekans Dağılımı Çubuk Grafik Pasta Grafik Pareto Diyagramı eİKT 203 – İstatistik Hafta: 01 – Giriş

Frekans Dağılım Tablosu Veriyi kategorilendirerek özetlemek Örnek: Okula geç gelme sebepleri Sebep Mazeret Sayısı Yüzdesi Trafik sıkışıklığı 45 15 Ailevi sebepler 39 13 Otobüsün gecikmesi 57 19 Uyuya kalma 111 37 Hava durumu 33 11 Acil durum 15 5 Toplam: 300 100 (Kategorik değişkenler) eİKT 203 – İstatistik Hafta: 01 – Giriş