Deney No: 6 Reaksiyon Isısının Hesaplanması

Slides:



Advertisements
Benzer bir sunumlar
MADDENİN HALLERİ VE ISI
Advertisements

Kimyasal Tepkimelerde Hız
Reaksiyon’un doğası ve hızı…
MADDE ve ISI.
Termodinamiğin İkinci Yasası ve Entropi
MADDENİN HALLERİ VE ISI
KİMYASAL TEPKİMELERDE ENERJİ
“Tersinir veya tersinmez, bütün çevrimlerde sistem başlangıç durumuna döndüğü için (i=s) sistemin entropi değişimi sıfırdır. Çünkü entropi bir durum fonksiyonudur.
Fiziksel ve kimyasal dönüşümlerdeki ısı alış-verişini inceler.
ENERJİ, ENERJİ GEÇİŞİ VE GENEL ENERJİ ANALİZİ
3)Maddenin Tanecikli Yapısı ve Isı
Termodinamiğin Birinci Yasası
MADDENİN TANECİKLİ YAPISI VE ISI
REAKSİYON ENTALPİSİ (ISISI)
Chemistry 140 Fall 2002 Termokimya
BÖLÜM 20: İSTEMLİ DEĞİŞME: ENTROPİ VE SERBEST ENERJİ
Atom ve Yapısı.
MADDE VE ISI.
Isı ve Sıcaklık ….
ISI ve SICAKLIK.
5.ISI VE SICAKLIK Isı ve sıcaklık farklı kavramlardır bunları ayırt edebilmeliyiz. Isı iki madde arasındaki enerji alışverişidir. Sıcaklık ise bu maddelerin.
ISI VE SICAKLIK Maddeyi oluşturan atom yada moleküller sürekli hareket halindedir. Bu hareket katı maddede denge konumu etrafındaki titreşimler , sıvı.
Maddenin Tanecikli Yapısı ve Isı
MADDENİN TANECİKLİ YAPISI
Entalpi - Entropi - Serbest Enerji
Maddenin Tanecikli Yapısı VE Isı
Maddenin Tanecikli Yapısı ve Isı
MADDENİN HALLERİ VE ISI
FEN ve TEKNOLOJİ / ISI ve SICAKLIK
MADDENİN TANECİKLİ YAPISI VE ISI
Hafta 5: TERMOKİMYA.
Hafta 3: KİMYASAL DENGE.
MADDENİN HALLERİ VE ISI
ISI VE SICAKLIK.
Maddenin Tanecikli Yapısı ve Isı
Termodinamik. Termodinamiğin 0. ve 1. yasaları. Hess yasası.
KİMYASAL DENGE VE KİMYASAL KİNETİK
MADDENİN HALLERİ VE ISI
ISI ve SICAKLIK.
Isı ve sıcaklık Sıcaklık duyularla algılanmakta ve genellikle “sıcak” ve “soğuk” kavramlarıyla ifade edilmektedir. Ekleyen: Netlen.weebly.com.
ISI.
BİLECİK ŞEYH EDEBALİ ÜNÜVERSİTESİ MÜH. FAKÜLTESİ TERMODİNAMİK
MADDE VE ISI.
Kimyasal Denge. Reaksiyon ilerleme değeri. Le Chatelier ilkesi.
REAKSİYON HIZI.
5.ISI VE SICAKLIK Isı ve sıcaklık farklı kavramlardır bunları ayırt edebilmeliyiz. Isı iki madde arasındaki enerji alışverişidir. Sıcaklık ise bu maddelerin.
ISI VE SICAKLIK.
ISI VE SICAKLIK.
DENEYLERİN ABC’si. Ağaç lifleri Bitkilerde bulunan ağsı yapılardır.
MADDE VE ISI.
MADDENİN TANECİKLİ YAPISI VE ISI
ISI: Bir maddenin bütün moleküllerinin sahip olduğu çekim,potansiyel enerjileri ile kinetik enerjilerinin toplamına ısı denir.Isı bir enerji türüdür.Başka.
HATİCE AKKOYUNLU SINIF ÖĞRETMENLİĞİ.
ISI VE SICAKLIK.
MEKANİK İş Güç Enerji Yrd. Doç. Dr. Emine AYDIN
KİMYASAL TEPKİMELERİN HIZLARI
Esra AYDİNFen ve Teknoloji ISI VE SICAKLIK. Esra AYDİNFen ve Teknoloji Isı ve sıcaklık farklı kavramlardır bunları ayırt edebilmeliyiz. Isı iki madde.
MADDENİN TANECİKLİ YAPISI
Maddenin Tanecikli Yapısı ve Isı
..
Biyoenerjetik.
Isı ve Sıcaklık Farklıdır
Hidroterapi ve balneoterapi
BÖLÜM 1: KİMYASAL KİNETİK
Maddenin Sınıflandırılması
Kimyasal Reaksiyonlar
FEN BİLİMLERİ-5 4.ÜNİTE MADDE VE DEĞİŞİM 3.Isı ve Sıcaklık HALİM GÜNEŞ.
MADDE VE ISI.
MADDENİN TANECİKLİ YAPISI ve ISI
Sunum transkripti:

Deney No: 6 Reaksiyon Isısının Hesaplanması ALTINCI HAFTA Deney No: 6 Reaksiyon Isısının Hesaplanması 1

Reaksiyon Isısının Hesaplanması Deney No:6 Reaksiyon Isısının Hesaplanması Teori: Deneyde reaksiyon ısısı, molar ısı kapasite, spesifik ısı ve kalorimetre kavramlarını irdelenecek ve bir reaksiyon ısısı hesaplanacaktır. Termodinamik, fiziksel ve kimyasal olaylara eşlik eden enerji değişimlerini inceler. Kimyasal termodinamiğin yasaları, belirli koşullarla belirli bir kimyasal tepkimenin kuramsal olarak oluşup oluşmayacağını önceden tahmin etmemizi sağlar. Tepkime ısısı, sabit sıcaklık ve sabit basınçta yürüyen bir kimyasal tepkimede sistem ile çevresi arasında alınıp verilen ısı miktarıdır. Tepkime ısıları deneysel olarak kalorimetre denilen ve ısı miktarını ölçen aletlerle belirlenir. Bir tepkime yalıtılmış bir sistemde gerçekleşirse yani çevresi ile madde ve enerji alışverişinde bulunmazsa, tepkime sistemin ısısal enerjisinde değişme meydana getirir ve sıcaklık artar yada azalır.

Burada Ts son sıcaklık, Ti ilk sıcaklıktır. Deney No:6 Yaratılmış bir sistemde sıcaklık artışına neden olan yada yalıtılmamış bir sistemde çevreye ısı veren bir tepkimeye ekzotermik tepkime denir. Ekzotermik bir tepkimede, tepkime ısısı negatif (qtep<0) bir büyüklüktür. Yalıtılmış bir sistemde sıcaklığın azalmasına neden olan yada yalıtılmamış bir sistemde çevreden ısı alan bir tepkimeye de endotermik tepkime denir. Bu durumda tepkime ısısı pozitif (qtep>0) bir büyüklüktür. Isı, sıcaklık farkından ileri gelen enerji alışverişidir. Sıcak bir cisimden soğuk bir cisme enerji aktarımı ısı şeklinde olur. Bir sistemin sıcaklığını bir derece değiştirmek için gerekli ısı miktarına o sistemin ısı kapasitesi denir. Sıcaklık değişimi: Burada Ts son sıcaklık, Ti ilk sıcaklıktır.

Deney No:6 Sistemin sıcaklığı artarsa Ts>Ti dir ve ΔT pozitiftir. q nun pozitif olması ısısın soğurulduğunu, ada sistem tarafından kazanıldığını belirtir. Sistemin sıcaklığı azalırsa (Ts<Ti) ΔT negatiftir. Negatif q ısı açığa çıktığını yada ısı kaybedildiğini gösterir. Termodinamiğin birinci yasası enerjinin korunumu yasasıdır. Sistem ve çevresi arasındaki etkileşimlerde toplam enerji sabit kalır. Diğer bir deyişle evrenin toplam enerjisi sabittir. Bu yasa aşağıdaki gibi formülle edilebilir. qsistem + qçevre = 0 Buna göre, sistemin kaybettiği ısı çevresi tarafından kazanılır, çevrenin kaybettiği ısı sistem tarafından kazanılır. Yani: qsistem = - qçevre

Reaksiyon Isılarının Ölçülmesi: Deney No:6 Reaksiyon Isılarının Ölçülmesi: Isı miktarını hesaplayabilmek için ısı kapasitesinin bilinmesi gerekir. Isı kapasitesi faz geçişlerinin olmadığı sıcaklık aralıklarında iki türlü tanımlanır. 1) Molar ısı kapasitesi: Bir mol maddenin sıcaklığını 1 K veya 1ºC yükseltmek için gerekli olan ısı miktarıdır. Birimi J/Kmol dür. 2) Spesifik ısı: Bir gram maddeyi 1 K veya 1ºC yükseltmek için gerekli olan ısı miktarıdır. Birimi J/Kg dır. ΔT=Ts-Ti (1) Bu durumda bir cismin aldığı veya verdiği ısı iki farklı şekilde hesaplanabilir. Isı(q) = mol sayısı × molar ısı kapasitesi × ΔT (2) Isı(q) = kütle × spesifik ısı × ΔT (3)

bağıntısı kullanılarak kalorimetrenin ısı kapasitesi hesaplanır. Deney No:6 Kalorimetreler: Reaksiyon ısıları ölçmek için kullanılan aletlerdir. Gerek sabit hacimde (kapalı kaplarda), gerek sabit basınçta (açık kaplarda, atmosfer basıncında) reaksiyon ısıları ölçülerek ΔE (iki halin iç enerjileri arasındaki fark) veya ΔH (entalpi değişimi) deneysel olarak hesaplanabilir. Her iki halde de önce kalorimetrenin ısı kapasitesi deneysel olarak belirlenmelidir. Kalorimetrenin kazandığı ısı:q(J) = kalorimetre ısı kapasitesi (J/K) ×ΔT(K) (4) bağıntısı kullanılarak kalorimetrenin ısı kapasitesi hesaplanır. Bu hesap yapıldıktan sonra kalorimetre ısı kapasitesi yerine konarak reaksiyon ısıları sadece kalorimetre içindeki sıcaklık yükselmesi (veya azalması) okunarak bulunur. Çözelti kalorimetre laboratuarda bir termos yada alüminyum yaprakla ağzı örtülmüş beherlerden yapılabilir.

Deney No:6 Deneyin Yapılışı: 1.Isı kapasitesi tayini: Kalorimetrenin ısı kapasitesi tayini için beher tipi kalorimetre kullanılır. (ağzı alüminyum folyo ile kapatılmış 250mL’lik beher içinde beher) Önceden tartılan Cu parçası(mCu) 30 dakika 100ºC deki etüvde ısıtılır. 250mL lik behere 100gram saf su (msu) konyulur. Bu suyun sıcaklığı bir termometre yardımı ile okunur ve kaydedilir (t1). 30 dakika sonra bakır parçası etüvden alınır ve bakırın ısısını kaybetmemesi için hemen kalorimetre kabına yerleştirilip son sıcaklığı kaydedilir (t2). (7) nolu bağıntıyı kullanılarak ısı kapasitesi hesaplanır. 2.Reaksiyon ısısının hesabı: 1. kısımda kullanılan beher boşaltılır ve kurutulur. Bu defa reaksiyon ısısı ölçülecek karışımlar koyulur. Behere 100 gram seyreltik HCl çözeltisi koyulur ve çözeltinin sıcaklığı okunarak kaydedilir (t1).

Aşağıdaki reaksiyonun reaksiyon ısısı hesaplanacaktır: Deney No:6 Önceden tarttılan magnezyum parçası çözeltiye atılarak reaksiyon tamamlanınca sıcaklık okunur (t2). (8) nolu bağıntı kullanılarak reaksiyon ısısı hesaplanır. Aşağıdaki reaksiyonun reaksiyon ısısı hesaplanacaktır: Hesaplamalar: Termodinamiğin birinci kanununa göre kaybedilen ısı kazanılan ısıya eşit olmalıdır. Bir başka değişle kazanılan ve kaybedilen ısıların toplamı sıfır olmalıdır. q bakırın kaybettiği = q suyun kazandığı + q kalorimetrenin kazandığı (6) mCu × CCu* × (100-t2) = msu × Csu*(t2-t1) + Isı kapasitesi*(t2-t1) (7) * : CCu = 0,385 J/Kg * : Csu = 4,18 J/Kg

Deney No:6 Reaksiyon ısısı = Isı kapasitesi × (t2-t1) + çözeltinin kütlesi × Cçözelti × (t2-t1) (8) Cçözelti = 4,21 J/Kg Sonuçlar: Beherin ısı kapasitesi:......................................................... Reaksiyon ısısı: ................................................................