BİRİM HÜCREDE NOKTALAR, YÖNLER VE DÜZLEMLER

Slides:



Advertisements
Benzer bir sunumlar
Spinel Yapılar.
Advertisements

Parametrik doğru denklemleri 1
Tipik Kristal Yapılar – Kuasi-kristaller
Mastarlar.
9. SINIF 3.ÜNİTE: Kimyasal türler arası etkileşimler
Atalet, maddenin, hareketteki değişikliğe karşı direnç gösterme özelliğidir.
SACLARIN VE PROFİLLERİN ŞEKİLLENDİRİLMESİ

Determinant Bir kare matrisin tersinir olup olmadığına dair bilgi veriyor n- boyutlu uzayda matrisin satırlarından oluşmuş bir paralel kenarın hacmine.
Çözünme durumuna göre Tam çözünme: Bir elementin diğeri içerisinde sınırsız çözünebilmesi. Hiç çözünmeme: Bir elementin diğeri içinde hiç çözünememesi.
% A10 B20 C30 D25 E15 Toplam100.  Aynı grafik türü (Column-Sütun) iki farklı veri grubu için de kullanılabilir. 1. Sınıflar2. Sınıflar A1015 B20 C3015.
Spring 2002Force Vectors1 Bölüm 2 - Kuvvet Vektörleri 2.1 – 2.4.
Örnek 1 Kullanıcının girdiği bir sayının karesini hesaplayan bir program yazınız.
KİRİŞ YÜKLERİ HESABI.
Bazı kelimeler Pivot: that upon or around which something turns or depends; the central, cardinal or crucial factor, member, part, etc. Orthogonal: right-angled,
OLASILIK TEOREMLERİ Permütasyon
GEOMETRİK CİSİMLER VE HACİM ÖLÇÜLERİ
İSTATİSTİK II BAĞIMSIZLIK TESTLERİ VE İYİ UYUM TESTLERİ “ c2 Kİ- KARE TESTLERİ “
ÖZEL TANIMLI FONKSİYONLAR
TEMELLER.
Ders ile ilgili sunumlar AVES > Dökümanlarda verilmektedir.
MALZEME BİLGİSİ Doç.Dr. Gökhan Gökçe 2. MALZEME YAPISI.
Regresyon Analizi Hanefi Özbek.
İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ İÇİN MALZEME BİLİMİ
Bölüm 11: Çembersel Hareket. Bölüm 11: Çembersel Hareket.
X-IŞINLARI KRİSTALOGRAFİSİ
Sıklık Dağılımları Yrd. Doç. Dr. Emine Cabı.
PROGRAMLAMAYA GİRİŞ VE ALGORİTMA
Bölüm 1: Temeller. Bölüm 1: Temeller Kavramlar Nicel Araçlar 1.1 Bilimsel yöntem 1.2 Simetri 1.3 Madde ve evren 1.4 Zaman ve değişim 1.5 Temsiller.
Genel form sembollerinde
NELER ÖĞRENECEĞİZ 1-Doğru ile nokta arasındaki ilişkiyi açıklamayı
ATALET MOMENTİ 4.1. Tanımı ve Çeşitleri
HOŞGELDİNİZ ÜÇLÜ FAZ DİYAGRAMALRI PROF. DR. HÜSEYİN UZUN Malzeme
X-IŞINLARI KRİSTALOGRAFİSİ
KONİ.
Ünite 8: Olasılığa Giriş ve Temel Olasılık Hesaplamaları
MBM 223 KRİSTALOGRAFİ 1. Hafta KRİSTAL YAPILARI VE KRİSTAL SİSTEMLER.
X-IŞINLARI KRİSTALOGRAFİSİ
Soru 1. Strontium Chloride, SrCl2, fluorite yapıdadır ve yoğunluğu 3052kg/m3 tür. İlgili atomların molar kütleleri Sr:87.62g/mol,Cl:35.45g/mol ise bu kristal.
MAT – 101 Temel Matematik Mustafa Sezer PEHLİVAN *
MAT – 101 Temel Matematik Mustafa Sezer PEHLİVAN *
KİMYASAL BAĞLAR.
-MOMENT -KÜTLE VE AĞIRLIK MERKEZİ
TEMEL GEOMETRİK KAVRAMLAR VE ÇİZİMLER
TEKNOLOJİ VE TASARIM DERSİ
Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır:
ZTM307 Makine ve Mekanizmalar Teorisi 3.Hafta
Bölüm 6 Örgütsel Yönlendirme
MİMARLIK BÖLÜMÜ STATİK DERSİ KUVVET SİSTEMİ BİLEŞKELERİ
Proteinler: Yapı ve İşlevleri
KUVVET, MOMENT ve DENGE 2.1. Kuvvet
Malzeme Bilimi.
SİSMİK PROSPEKSİYON DERS-3
İMÜ198 ÖLÇME BİLGİSİ İMÜ198 SURVEYING Bahar Dönemi
NİŞANTAŞI ÜNİVERSİTESİ
CİSİMLERİN GÖRÜNÜŞLERİNİ ÇIKARMA
X-IŞINLARI KRİSTALOGRAFİSİ
AĞIRLIK MERKEZİ (CENTROID)
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
Tane sınırları Metal ve alaşımları tanelerden oluşur. Malzemenin aynı atom dizilişine sahip olan parçasına TANE denir. Ancak her tanedeki atomsal.
NİŞANTAŞI ÜNİVERSİTESİ
NİŞANTAŞI ÜNİVERSİTESİ
X-IŞINLARI KRİSTALOGRAFİSİ
2) Çift Optik Eksenli Mineraller (ÇOE)
ÇOKGENLER.
RASTGELE DEĞİŞKENLER Herhangi bir özellik bakımından birimlerin almış oldukları farklı değerlere değişken denir. Rastgele değişken ise tanım aralığında.
ÇATI MAKASINA GELEN YÜKLER
Sunum transkripti:

BİRİM HÜCREDE NOKTALAR, YÖNLER VE DÜZLEMLER

Doğrultuları Bulmak İçin Uygulanan Prosedür

Doğrultuların Miller İndislerinin Belirlenmesi

Doğrultuları Gösteren Miller İndislerinin Kullanımında Dikkat Edilecek Hususlar

Kübik Sistemlerde Kristalografik Doğrultuların Eşdeğerleri

Örgü Düzlemleri ve Miller Indisleri Bir kristal yapısını bir örgü üzerinde örgü noktalarının 3 boyutlu hayal edilmesi ile gösterebiliriz. Kafesi düzlem takımlarına ayırarak farklı doğrultulardaki düzlem takımlarını canlandırabilirsiniz.

Düzlemlerin Miller İndislerinin (hkl) Tanımlanması Şekilde verilen A, B, C düzlemlerinin indislerini belirleyiniz

Kübik Sistemde Ayna Düzlemleri 3 eşdeğer düzlem 6 eşdeğer düzlem

Bir takım içindeki tüm düzlemler birbirinin aynıdır Düzlemler hayal ürünüdür (sanaldır) Düzlem çiftleri arasındaki dik uzaklık komşu düzlemler arasındaki d uzaklığıdır Düzlemleri isimlendirebilmek için : a,b,c üzerindeki kesim noktalarını bulunuz. a,b,c: 1/4, 2/3, ½ Bunların terslerini alınız 4, 3/2, 2 Tam sayı olacak şekilde ortak bir sayı ile çarpınız (8 3 4) [gerekli ise]

Örnek – Şekildeki düzlemin Miller İndislerini bulunuz a,b,c üzerindeki kesim noktaları 1/2, 1, 1/2 Tersleri 2, 1, 2 Tam sayıya dönüştürülmesi (2, 1, 2)

Bu köşegen düzlem eksenleri 1, 1,  noktalarında kesmektedir Genel isimlendirme (h k l) şeklindedir. h,k ve l isimlendirilecek düzlemin a, b ve c eksenlerini kesim noktalarının koordinatlarıdır. (hkl)’ye o düzlemin MILLER INDİS leri denir y eksenine dik olan düzlem eksenleri , 1,  da kestiğinden bu düzlemin adı  (0 1 0) düzlemidir Bu köşegen düzlem eksenleri 1, 1,  noktalarında kesmektedir Düzlemin adı (1 1 0) düzlemidir 0 indisi düzlemin bu eksene (z eksenine) paralel olduğu anlamına gelir

Aşağıdaki Miller İndislerine ait düzlemleri çiziniz (0 0 1) (1 1 1)

d-düzlemler arası uzaklık formülü orthogonal kristal sistemleri için (===90) kübik kristal (orthogonal’in özel hali) a=b=c Örnek : (1 0 0) d = a (2 0 0) d = a/2 (1 1 0) d = a/2 gibi.

Bir kübik kristal a=5.2 Å (=0.52nm) kenar uzunluğuna sahiptir. (110) Düzlemleri arasındaki d uzaklığını hesaplayınız. Bir tetragonal kristal a=4.7 Å, c=3.4 Å uzunluklarına sahiptir. Aşağıdaki düzlemler arasındaki uzaklıkları bulunuz. (1 0 0) (0 0 1) (1 1 1) 4.7 Å 3.4 Å 2.4 Å

Özet Bir kristal içinde çeşitli düzlemler düşünebiliriz Her bir düzlem takımı (h k l) Miller indisleri ile tanımlanır (h k l ) düzlem takımları arasındaki d uzaklığı hesaplanabilir

KATIHAL Kristaller Kristal Yapı Unsurları birim hücreler simetri örgüler Bazı önemli Kristal Yapıları ve Özellikleri close packed yapıları oktahedral and tetrahedral delikler temel yapılar ferroelektrisite

Amaç Simetrik doku içinde birim hücrenin tanımlanması Mümkün olabilen 7 adet birim hücre şekilleri kübik, tetragonal, orthorhombik ve hegzagonal birim hücre şekilleri

Why study crystal structures? Why Solids?  most elements solid at room temperature  atoms in ~fixed position “simple” case - crystalline solid  Crystal Structure Why study crystal structures?  description of solid  comparison with other similar materials - classification  correlation with physical properties

Başlangıçtaki düşünceler Kristaller katıdır, ancak katıların kristalin olması gerekmez Kristaller simetriye ve uzun mesafeli düzene sahiptirler(Kepler) Küreler ve küçük şekiller düzgün şekiller oluşturacak şekilde biraraya gelebilirler (Hooke, Hauy) ?

Düzgün yapıda boşluk olmaz Grup tartışması Kepler kar tanelerinin neden 5 veya 7 değil de 6 köşeli olmalarını merak etmiştir. Çok kenarlıların iki boyutta bir araya gelmelerini inceleyerek neden 5 kenarlı veya 7 kenarlı çokgenlerin olamayacağını gösterebiliriz. Düzgün yapıda boşluk olmaz

Tanımlar 1. Birim Hücre “Bir kristal yapısında, 3 boyutta tekrarlanan ve yapının tüm simetrisini gösteren en küçük birime Birim Hücre denir” Birim Hücre 3 kenarlı - a, b, c 3 açılı - , ,  bir kutudur

7 Birim Hücre Şekli Kübik a=b=c ===90° Tetragonal a=bc ===90° Orthorhombik abc ===90° Monoklinik abc ==90°,   90° Triklinik abc     90° Hegzagonal a=bc ==90°, =120° Rhombohedral a=b=c ==90°

2 Boyutlu Örnek - kayatuzu (sodyum klorür, NaCl) Örgü noktalarını tanımlıyoruz. Ortamdaki tüm noktalar birbirinin aynıdır.

Başlangıç noktası keyfi olarak seçilir Başlangıç noktası keyfi olarak seçilir. Örgü noktalarının atom olması gerekmez, ancak birim hücre biçimi daima aynı olmalıdır.

Bu da bir Birim Hücredir Na veya Cl’dan başlamak bir şeyi değiştirmez

veya bir atomdan başlamayabilirsiniz

Bunlar, aynı şekilde olmalarına rağmen bir birim hücre değildir Bunlar, aynı şekilde olmalarına rağmen bir birim hücre değildir. Birim hücreler arasında boşluk bulunmaması gerekir

2 boyutta bu bir birim hücredir, fakat 3 boyutta değildir.

All M. C. Escher çalışması Cordon Art-Baarn-the Netherlands All M.C. Escher çalışması Cordon Art-Baarn-the Netherlands. All rights reserved.

Özet Bütün birim hücreler aynı olmalıdır Birim hücreler birbirleri ile temas halinde olmalıdırlar, aralarında boşluk bulunamaz Bütün birim hücreler aynı olmalıdır Birim hücreler yapının tüm simetrisine sahip olmalıdır

Amaç Basit kristal yapısının çizilmesi Bir çok önemli kristal yapısının close-packing ile tanımlanabilir olmasının önemi Benzer yapıların karşılaştırılması ve farklarının anlaşılması

Kristal Yapı Çizimleri Yapının tanımlanmasının bir başka yolu : Bir birim hücre yüzeyinde bir eksen boyunca tasarlanmış yapının çizilmesidir b BAŞLANGIÇ a

Örnek 1 - Kayatuzu

Örnek 2 - ZnS (Çinko Blendi)

Örnek 3 - Fluorit yapısı

Sfalerit (ZnS) ve Elmas Yapısının Karşılaştırılması Küreler ve bağı temsil eden çubuklar her iki yapıda da 4 eksenli koordinasyon bulunduğunu göstermektedir Yapıdaki tetrahedrlere bakarak elmas şeklini görebiliriz

Fluorit yapısı Boş ve dolu küplerin sıralı olarak 3 boyutlu düzenlenmesini düşünebilirsiniz

Cadmiyum Klorür, CdCl2 yapısı Tabakalanmış yapı

Nickel Arsenid (NiAs) yapısı Kayatuzu yapısının h.c.p. Benzeri. h.c.p. Ni octahedrları ile sağlanmıştır c ekseni bize doğru yönelmiştir. c ekseni yukarıya doğrudur

As’niğin koordinasyon sayısı 6 dır, fakat bir trigonal prizma şeklindedir. c- doğrultusunda Ni – Ni uzaklığı oldukça kısadır. 3d yörüngelerinin üst üste binmesi metalik bağların doğmasına neden olur. NiAs yapısı, transisyon (geçiş) metalleri ile As, Sb, Bi, S, Se gibi elementlerin oluşturduğu bileşiklerde ortak yapıdır.

AX yapısının özeti  wurtzit ZnS  koordinasyon sayısı = 4  sfalerit NaCl, NiAs koordinasyon sayısı = 6 CsCl koordinasyon sayısı = 8 Genel kural, daha büyük (ağır) katyonların daha büyük koordinasyon sayısına sahip olduğu şeklindedir. Bu AX2 yapısında da gözlenebilir

AX2 yapısının özeti SiO2, BeF2 silisyum yapısı KS = 4 : 2 TiO2, MgF2 rutil yapısı KS = 6 : 3 CdCl2, CdI2 tabaka yapısı KS = 6 : 3 PbO2, CaF2 fluorit yapısı KS = 8 : 4

Amaç Kesirli koordinatlar yardımı ile atom pozisyonlarının belirlenmesi Bir küp içindeki octahedral ve tetrahedral konumlar arasındaki uzaklıkların hesaplanması Bir küp içindeki intersitisyel konumların büyüklüklerinin hesaplanması

Kesirli Koordinatlar Birim hücre içindeki atomların konumları 1. 2. 3. 4. 0, 0, 0 ½, ½, 0 ½, 0, ½ 0, ½, ½ Not: Yüzey köşegeni boyunca olan atomlar birbirleri ile temas halindedir (close packed)

Oktahedral Konumlar Koordinat ½, ½, ½ Uzaklık = a/2 Yüzey merkezli kübik anyon düzeninde katyonların oktahedral konumları: ½ ½ ½, ½ 0 0, 0 ½ 0, 0 0 ½

Tetrahedral konumlar Bir küp ile tetrahedronun ilişkisi Bu küpte tetrahedral konum uzay merkezindedir

f.c.c.(ymk) yapının birim hücresi her bir kenar ikiye bölünerek her bir minikübün merkezinde bir tetrahedral konum olacak şekilde bölünebilir

Dolayısıyla bir ymk yapıda 8 tane tetrahedr bulunur

Bir küpteki önemli boyutlar Bağ uzunlukları Bir küpteki önemli boyutlar Yüzey köşegeni, yk (yk) = (a2 + a2) = a 2 Uzay köşegeni , uk (uk) = (2a2 + a2) = a 3

Bağ uzunlukları: Oktahedr: Hücre kenarının yarısı a/2 Tetrahedr: Uzay köşegenin dörtte biri, 3a/4 Anyon-anyon: Yüzey köşegenin yarısı, 2a/2

İnterstisyellerin büyüklükleri fcc / ccp Küreler yüzey diyagonali boyunca temas halindedir oktahedral site, bağ uzunluğu = a/2 oktahedral site’nin yarıçapı = (a/2) - r tetrahedral site, bağ uzunluğu = a3/4 tetrahedral site’nin yarıçapı = (a3/4) - r

Özet f.c.c./c.c.p anyonları Birim hücre başına 4 anyon 000 ½½0 0½½ ½0½ 4 oktahedral atom: ½½½ 00½ ½00 0½0 4 tetrahedral T+ daki atomlar ¼¼¼ ¾¾¼ ¾¼¾ ¼¾¾ 4 tetrahedral T- deki atomlar ¾¼¼ ¼¼¾ ¼¾¼ ¾¾¾

Özet Kübün basit geometrisi ve Pisagor teoremi kullanılarak bir fcc (ymk) yapıda oktahedral bağ uzunluklarını (a/2) ve tetrahedral bağ uzunluklarını (3a/4) hesaplayabiliriz. Sonuç olarak oktahedral interstisyelin [(a/2) – r] ve tetrahedral interstisyelin [(a3/4) – r] yarıçapları hesaplanabilir. Burada r, iyon paketlenme yarıçapıdır.

Amaç Paketleme kesrinin gösterilmesi Paketleme kesirlerinin iki farklı paketleme rejimi için tanımlanması Bir primitif hücre için ilk n çizgilerinin hkl değerlerinin bulunması

Paketleme Kesirleri - ccp Kübik kapalı paket (cubic close packing) = fcc

Birim hücrenin yüzeyi şekildeki gibidir Birim hücrenin kenarı 2a2 = (4r)2 a = 2r 2 Hacim = 162 r3 fcc yapısında birim hücredeki atom sayısı (8  1/8) + (6  1/2) = 4 tanedir

Paketleme Kesri Bir yapıda atomların işgal ettiği hacmin toplam hacme oranına paketleme kesri denir ve  ile gösterilir. Kübik kapalı paket için Küreler paketleme kesri 0,74 olacak şekilde birbirleri ile mümkün olabildiğince sıkı paket haline gelmişlerdir.

Örnek: Basit kübik birim hücre için paketleme kesrini hesaplayınız.

Primitif a = 2r a3 = 8r3 Atom sayısı = (8 x 1/8) = 1 = 0.52