Thevenin (1883) ve Norton (1926) Teoremleri

Slides:



Advertisements
Benzer bir sunumlar
Süperpozisyon Teoremi Thevenin Teoremi Norton Teoremi
Advertisements

DEVRE TEOREMLERİ.
DEVRE TEOREMLERİ.
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
İletkenlik Elektrik iletkenlik, malzeme içerisinde atomik boyutlarda “yük taşıyan elemanlar” (charge carriers) tarafından gerçekleştirilir. Bunlar elektron.
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Eleman Tanım Bağıntıları Direnç Elemanı: v ve i arasında cebrik bağıntı ile temsil edilen eleman v i q Ø direnç endüktans Kapasite memristor Endüktans.
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Ders Hakkında 1 Yarıyıl içi sınavı 16 Nisan 2013 % 22 3 Kısa sınav 12 Mart 9 Nisan 14 Mayıs % 21 1 Ödev % 7 Yarıyıl Sonu Sınavı % 50.
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
AMPULLERİN BAĞLANMA ŞEKİLLERİ HAZIRLAYAN: TANER BULUT FEN BİLİMLERİ ÖĞRETMENİ.
DİRENÇ. Cisimlerin elektrik akımını geçirirken gösterdiği zorluğa direnç denir. Birimi ohm olup kısaca R ile gösterilir. Devredeki her elemanın direnci.
Toplamsallık ve Çarpımsallık Özelliği
Devre Denklemleri: Genelleştirilmiş Çevre Akımları Yöntemi
Toplamsallık ve Çarpımsallık Özelliği
YARI İLETKEN DİYOTLAR Elektronik Devreler.
Thevenin (1883) ve Norton (1926) Teoremleri
Genelleştirilmiş Çevre Akımları Yöntemi
YAŞAMIMIZDAKİ ELEKTRİK Basit Elektrik devresi: © Elektrik enerjisini ısı ve ışık enerjisine dönüştürür. © Pil, pil yatağı, anahtar, iletken kablo, duy.
2-Uçlu Direnç Elemanları
Negatif-Pozitif Geribesleme Devreleri Lineer bölgede v in vdvd ioio +vo+vo v in ioio +vo+vo +-+- vdvd.
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Devre ve Sistem Analizi
Eleman Tanım Bağıntıları
KONDÜKTOMETRİ.
ORGANİZASYON YAPISI.
Sürekli Sinüsoidal Hal
2.Hafta Transistörlü Yükselteçler 2
Temel kanunlardan bizi ilgilendirenler şunlardır:
8.Hafta İşlemsel Yükselteçler 3
Genelleştirilmiş Çevre Akımları Yöntemi
Eleman Tanım Bağıntıları
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Genelleştirilmiş Çevre Akımları Yöntemi
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik
ATALET MOMENTİ 4.1. Tanımı ve Çeşitleri
Teorem 2: Lineer zamanla değişmeyen sistemi
_ _ Bazı Lineer 2-kapılı Direnç Elemanları
+ - i6 =2i i ik1 =cos2t Vk2 =sin(3t+15) R1 C6 ik1 Vk2 R1 = R1 = 1 ohm
Ders Hakkında 1 Yarıyıl içi sınavı 11 Nisan 2010 % 26
4.KONU Kirchoff Gerilim Kanunları.
Akım kontrollü gösterimini elde ediniz
_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is
4.Hafta Transistörlü Yükselteçler 4
Lemma 1: Tanıt: 1.
Maksimum Güç Transferi Teoremi
Bir ağaç seçip temel kesitlemeleri belirleyelim Hatırlatma
Matrise dikkatle bakın !!!!
NET 205 GÜÇ ELEKTRONİĞİ Öğr. Gör. Taner DİNDAR
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
NET 105 DOĞRU AKIM DEVRE ANALİZİ Öğr. Gör. Taner DİNDAR
NET 207 SENSÖRLER VE DÖNÜŞTÜRÜCÜLER Öğr. Gör. Taner DİNDAR
AKADEMİK BİLİŞİM KONFERANSI 2015 ANADOLU ÜNİVERSİTESİ
Akım, Direnç ve Doğru Akım Devreleri
ELEKTRİK DEVRE TEMELLERİ
Bölüm28 Doğru Akım Devreleri
Bölüm 1: Ohm Yasası ve Ohm Yasası ile Direnç Ölçümü
BÖLÜM 27 Akım ve Direnç Hazırlayan : Dr. Kadir DEMİR
ELEKTRİK DEVRE TEMELLERİ
LOJİK KAPILAR (GATES) ‘Değil’ veya ‘Tümleme’ Kapısı (NOT Gate)
ELEKTRİK DEVRE TEMELLERİ
İşlemsel Kuvvetlendirici
ELEKTRİK DEVRE TEMELLERİ
DTL (Diyod-Transistör Lojik)
ELEKTRİK DEVRE TEMELLERİ
A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü
A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü
A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü
Sunum transkripti:

Thevenin (1883) ve Norton (1926) Teoremleri Amaç: Lineer, zamanla değişmeyen çok uçlu, iki uçlu dirençlerden ve bağımsız akım ve gerilim kaynaklarından oluşmuş bir N 1-kapılısının basit bir eşdeğerini elde etmek. Thevenin Eşdeğeri: + _ v i RTH VTH + _ v i N 1-Kapılısı

_ _ _ RTH Thevenin eşdeğer direnci + v i RTH VTH Devredeki tüm bağımsız kaynaklar devre dışı iken 1-1’ uçlarından görülen eşdeğer direnç VTH Açık devre gerilimi 1-1’ uçları açık devre iken 1-1’ uçları arasındaki gerilim Thevenin Teorem: N 1-kapılısının uçlarına i değerinde bir akım kaynağı bağlandığında tüm i değerleri için tek çözümü varsa ( tek v değeri belirlenebiliyorsa) Thevenin eşdeğeri vardır. Norton Eşdeğeri: + _ v i GN iN + _ v i N 1-Kapılısı

_ + v i GN iN GN Norton eşdeğer iletkenliği Devredeki tüm bağımsız kaynaklar devre dışı iken 1-1’ uçlarından görülen eşdeğer iletkenlik iN Kısa devre akımı 1-1’ uçları kısa devre iken 1-1’ uçlarındaki akım Norton Teorem: N 1-kapılısının uçlarına v değerinde bir gerilim kaynağı bağlandığında tüm v değerleri için tek çözümü varsa ( tek i değeri belirlenebiliyorsa) Norton eşdeğeri vardır. Thevenin Eşdeğeri: N kapılısı akım kontrollü değilse Thevenin eşdeğeri yok Norton Eşdeğeri: N kapılısı gerilim kontrollü değilse Norton eşdeğeri yok Norton eşdeğeri yok Thevenin eşdeğeri yok

Sonuç: Lineer, zamanla değişmeyen direnç ve bağımsız kaynaklardan oluşmuş N 1-kapılısı akım kontrollu ise bağlı bulunduğu devrenin çözümünü etkilemiyecek şekilde Thevenin eşdeğeri ile ifade edilir. Lineer, zamanla değişmeyen direnç ve bağımsız kaynaklardan oluşmuş N 1-kapılısı gerilim kontrollu ise bağlı bulunduğu devrenin çözümünü etkilemiyecek şekilde Norton eşdeğeri ile ifade edilir.