Teorem 2: Lineer zamanla değişmeyen sistemi

Slides:



Advertisements
Benzer bir sunumlar
Baz Değişimi Bir sorun için uygun olan bir baz, bir diğeri için uygun olmayabilir, bu nedenle bir bazdan diğerine değişim için vektör uzayları ile çalışmak.
Advertisements

Kofaktör Matrisler Determinantlar Minör.
Devre ve Sistem Analizi Projesi
DERS 2 MATRİSLERDE İŞLEMLER VE TERS MATRİS YÖNTEMİ
Projemizin İçeriği: Anahtarlanmış Doğrusal Sistemler
MATRİS-DETERMİNANT MATEMATİK.
EŞANLI DENKLEMLİ MODELLERDE BELİRLENME PROBLEMİ
Bölüm6:Diferansiyel Denklemler: Başlangıç Değer Problemleri
DERS 3 DETERMİNANTLAR ve CRAMER YÖNTEMİ
SONLU ELEMANLAR YÖNTEMİ
Yrd. Doç. Dr. Mustafa Akkol
SONLU ELEMANLARA GİRİŞ DERSİ
Yrd. Doç. Dr. Mustafa AKKOL
SONLU ELEMANLAR DERS 9.
Yrd. Doç. Dr. Mustafa Akkol
Matrisler ( Determinant )
Lineer Denklem Sistemlerinin
Lineer Cebir ve Uygulamaları Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Geçen hafta anlatılanlar Değişmez küme Değişmez kümelerin kararlılığı Bildiğimiz diğer kararlılık tanımları ve değişmez kümenin kararlılığı ile ilgileri.
V2’nin q1 doğrultusunda ki bileşenine
n bilinmeyenli m denklem
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
Hatırlatma: Durum Denklemleri
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
Tanım: (Lyapunov anlamında kararlılık)
1. Mertebeden Lineer Devreler
Lineer, Zamanla değişmeyen 2- Kapılılar Zorlanmış çözüm ile ilgileniyor İlk koşullar sıfır 1- kapılılar için tanımladığımız Thevenin-Norton eşdeğerlerini.
ISIS IRIR ITIT Z=10e -j45, 3-fazlı ve kaynak 220 V. I R, I S, I T akımları ile her empedansa ilişkin akımları belirleyin.
Toplamsallık ve Çarpımsallık Özelliği
Devre Denklemleri: Genelleştirilmiş Çevre Akımları Yöntemi
Toplamsallık ve Çarpımsallık Özelliği
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Düğüm-Eyer dallanması için ele alınan ön-örneğe yüksek mertebeden terimler eklense davranışı yapısal olarak değişir mi? Bu soru neden önemli Lemma sistemi.
Bu derste ders notundan 57,58,59 ve 67,68,69,70,71 nolu sayfalar kullanılacak.
2- Jordan Kanonik Yapısı Elemanter işlemler: (1) Satır (Sütun) değiştirme (2) Satır (Sütun)’u bir sabit ile çarpma (3) Satır (Sütun ) toplama Elemanter.
2- Jordan Kanonik Yapısı
GrafTeorisine İlişkin Bazı Tanımlar
Tanım: ( Temel Çevreler Kümesi)
Thevenin (1883) ve Norton (1926) Teoremleri
Genelleştirilmiş Çevre Akımları Yöntemi
Biz şimdiye kadar hangi uzaylar ile uğraştık:
“Bilgi”’nin Gösterimi “Bilgi” İnsan veya Makina Yorumlama Öngörme Uygun yanıt verme Depolanmış enformasyon veya model Kurallar: (1) Benzer sınıflardan.
Yapay sinir ağı, basit işlemci ünitelerinden oluşmuş, çok
Lineer cebrin temel teoremi-kısım 1
Lineer Vektör Uzayı ‘de iki
3. Kirchhoff’un Akım Yasası (KAY)
Devre ve Sistem Analizi
Devre Fonksiyonu: Özellik: Herhangibir devre fonksiyonunun genliği w’nın çift fonksiyonudur, fazı da her zaman w’nın tek fonksiyonudur. Tanıt: ve Lemma’dan.
Eleman Tanım Bağıntıları
Özdeğerler, Sıfırlar ve Kutuplar
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik
Dizinin Yakınsaklığı, Limit
Teorem 2: Lineer zamanla değişmeyen sistemi
Geçen hafta ne yapmıştık
Hatırlatma bu durumda ne olacak? Boyuta dikkat!!
Sinir Hücresi McCulloch-Pitts x1 w1 x2 w2 v y wm xm wm+1 1 '
Teorem NU4 Lineer Kombinasyonlar ‘de lineer bağımsız bir küme Tanıt
Hopfield Ağı Ayrık zaman Sürekli zaman
G grafının aşağıdaki özellikleri sağlayan Ga alt grafına çevre denir:
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik
Matris tersi A’ matrisi nxn boyutlu bir matris olsun.
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik ve Kararlılık
Banach Sabit Nokta Teoremi (Büzülme Teoremi)
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
Bir ağaç seçip temel kesitlemeleri belirleyelim Hatırlatma
Matrise dikkatle bakın !!!!
Ön bilgi: Laplace dönüşümü
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
Lineer Denklem Sistemlerinin
Sunum transkripti:

Teorem 2: Lineer zamanla değişmeyen sistemi Hatırlatma Teorem 2: Lineer zamanla değişmeyen sistemi anında yönetilebilir matrisinin satırları aralığında lineer bağımsızdır. Tanıt: ‘ nin satırları lineer bağımsız kabul edilip sistemin yönetilebilir olduğu gösterilecek anındaki çözüm matrisinin satırlarının aralığında lineer bağımsız olduğunu hipotezden dolayı söyleyebiliyoruz. Teorem 1’den yararlanarak aşağıdaki ifadeyi yazabiliriz tersinirdir. başlangıç durumunu durumuna götüren giriş aşağıdaki ifade ile belirlenebilir,

‘ nin satırları lineer bağımsız ise başlangıç durumunu durumuna götüren girişin var olduğu dolayısıyla lineer zamanla değişmeyen sistemin yönetilebilir olduğu gösterildi. Varsayım: sistem yönetilebilir ancak ‘nin satırları lineer bağımlı alırsak

varsayım ile çelişiyor ‘ nin satırları lineer bağımsız

Lemma: 1xm boyutlu fonksiyonlarının aralığında sürekli türevleri olsun Hatırlatma Lemma: 1xm boyutlu fonksiyonlarının aralığında sürekli türevleri olsun sağlayan bir var ise ‘ler aralığında lineer bağımsızdır

yönetilebilirlik matrisi Teorem 3: Lineer zamanla değişmeyen sistemi yönetilebilir yönetilebilirlik matrisi Tanıt: Teorem 2 yönetilebilir ‘nin satırları lineer bağımsız Lemma Cayley-Hamilton Teoreminden ‘nın lineer kombinasyonu olarak yazılabilir ve (-) işareti rankı değiştirmez

sistemi yönetilebilir mi?

ile verilen sistemde [0,0]T durumunu [1,0]T durumuna [0,t1] aralığında götüren girişi bulunuz.

Gözlenebilirlik: Sonlu zaman aralığında çıkışlarını gözleyerek sistemin ilk koşulu belirlenebilir mi? Tanım: Gözlenebilirlik aralığındaki giriş-çıkış çiftinden tek olarak belirlenebiliyorsa sistem aralığında gözlenebilirdir.

gözlenebilirlik matrisi Teorem 4: Lineer zamanla değişmeyen sistemi gözlenebilir matrisinin sütunları aralığında lineer bağımsız. Teorem 3: Lineer zamanla değişmeyen sistemi gözlenebilir gözlenebilirlik matrisi

ile verilen sistem hangi pi i=0,1,2 değerleri için gözlenebilirdir?

Frekans Tanım Bölgesinde Yönetilebilirlik ve Gözlenebilirlik Varsayım: A’nın özdeğerleri lineer katsız (*) ’ler birbirinden ....... ise .................................dolayısıyla sistem........... ise .................................dolayısıyla sistem...........

(*) sistemine ilişkin transfer fonksiyonu: ve/veya ise sistem yönetilemez ve/veya gözlenemez

sıfır kutup sadeleşmesi olmamasıdır. Lemma: sisteminin özdeğerleri katsız ise, sistemin yönetilebilir olması için gerek ve yeter koşul transfer fonksiyonunda sıfır kutup sadeleşmesi olmamasıdır. Gözlenebilirliği ve yönetilebilirliği ayrı ayrı incelemek istiyorsak: Yönetilebilirlik için Gözlenebilirlik için t-tanım bölgesinde yönetebilirlik ve gözlenebilirlik için baktığımız matrisler ile verilen sistemin yönetilebilirliğini ve gözlenebilirliğini inceleyiniz?

Minimal Gerçekleme durum uzayı gösterimi verilen bir sistem için transfer fonksiyonu matrisi tek olarak belirlenebilir. Tersi söz konusuysa ne olur? transfer fonksiyonu matrisi verildiğinde durum uzayı gösterimi tek olarak belirlenebilir mi? Farklı boyutlarda ‘i sağlayan sonsuz tane durum uzayı gösterimi vardır. Amaç: Durum uzayı gösteriminin boyutu ile sistemin yönetilebilirliği, gözlenebilirliği arasındaki ilişkiyi incelemek. Tanım: (minimal gerçekleme) transfer fonksiyonu matrisine karşılık düşen n boyutlu durum uzayı gösterimi ‘e, eğer ‘in boyutu n’den küçük bir gerçeklemesi yoksa minimal gerçekleme denir. Dikkat!!!!! Minimal gerçekleme tek değildir.

Bu sistem için transfer fonksiyonu matrisini hesaplayalım. Teorem: transfer fonksiyonu matrisinin gerçeklemesi minimaldir gözlenebilir ve yönetilebilirdir.

Sıfır giriş kararlılığı Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin çözümleri denge noktalarıdır. lineer sistemde nasıl belirlenir? A matrisi tersinir ise tek aksi taktirde sonsuz tane Hatırlatma (Norm) V vektör uzayı olmak üzere aşağıdaki üç özelliği sağlayan bağıntı “norm”’dur