Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = s2 Eşit Varyans Y X
Farklı Varyans Var(ui|Xi) = Var(ui) = E(ui2) = si2 Farklı Varyans Hata Zaman
Farklı Varyans ile Karşılaşılan Durumlar Kesit Verilerinde. Kar dağıtım modellerinde. Sektör modellerinde. Ücret modellerinde. Deneme - Yanılma modellerinde.
Farklı Varyansı Gözardı Etmenin Sonuçlar Tahminci Özelliklerine etkisi. Tahminciler sapmasız ve tutarlıdırlar. ancak etkin değildirler. Hipotez testleri üzerine etkisi. Tahminciler minimum varyanslı olma özelliklerini kaybettiklerinden. bunlara bağlı olarak elde edilen t ve F istatistiklerine ve elde edilen güven aralıklarına güvenilemeyecektir. Öngörümleme üzerine etkisi. Önceden değerleri sapmalı olacaktır.
Parametre Tahmincilerinin Özellikleri Sapmasızlık Anakütle regresyon modeli Sapma nedeni ile i nin beklenen değeri sıfırdan farklı ise.
Parametre Tahmincilerinin Özellikleri Sapmasızlık
Parametre Tahmincilerinin Özellikleri Etkinlik Modelde sabit varyans varsayımının geçerli olmaması durumunda parametre tahmincileri 0* ve 1* olsun. 0* ve 1* ın varyanslarınn doğrusal sapmasız tahmin yöntemi ile belirlenmesi: Doğrusallık şartı gereği:
Etkinlik in beklenen değeri ve varyansı:
Tutarlılık ’nin tutarlı tahmincisidir.
Tutarlılık
Farklı Varyansın Tesbit Edilmesi Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile.
Grafik Yöntem
Grafik Yöntem
Grafik Yöntem
Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r 0 ttab =? 2.Aşama a = ? s.d.=? 3.Aşama 4.Aşama thes > ttab H0 hipotezi reddedilebilir
Sıra Korelasyonu Testi X e Xs es di2 di 75 88 95 125 115 127 165 172 183 225 80 100 120 140 160 180 200 220 240 260 7.0545 4.7091 -3.6364 11.0182 -14.327 -17.672 4.9818 -3.3636 -7.7091 18.9455 1 2 3 4 5 6 7 8 9 10 5 -4 16 3 -1 1 2 1 1 7 -3 9 8 -3 9 9 -3 9 4 3 9 1 7 49 6 3 9 10 Sdi2=112
Sıra Korelasyonu Testi = 0.3212 1.Aşama H0: r = 0 H1: r 0 ttab = 2.306 2.Aşama a = 0.05 s.d.= 8 3.Aşama = 0.9593 4.Aşama thes < ttab H0 hipotezi reddedilemez.
Goldfeld-Quandt Testi Y = b1 + b2 X2 + b3 X3+ ... + bk Xk + u Y X2s X3 ... Xk I.Alt Örnek n1 YI = b11 + b21 X2 + b31 X3+ ... + bk1 Xk + u Se12=? Çıkarılan Gözlemler n(1/6) < c < n(1/3) II.Alt Örnek n2 YII = b12 + b22 X2 + b32 X3+ ... + bk2 Xk + u Se22=?
Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = ? Ftab =? 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir
Goldfeld-Quandt Test lnMaas = b1 + b2 Yıl + b3 Yıl2 Dependent Variable: lnMaas Included observations: 222 Variable Coefficient Std. Error t-Statistic Prob. C 3.809365 0.041338 92.15104 0.0000 Yıl 0.043853 0.004829 9.081645 0.0000 Yıl2 -0.000627 0.000121 -5.190657 0.0000 R-squared 0.536179 Mean dependent var 4.325410 Adjusted R-squared 0.531943 S.D. dependent var 0.302511 S.E. of regression 0.206962 Akaike info criterion -0.299140 Sum squared resid 9.380504 Schwarz criterion -0.253158 Log likelihood 36.20452 F-statistic 126.5823 Durbin-Watson stat 1.618981 Prob(F-statistic) 0.000000
Goldfeld-Quandt Test 1.alt örnek sonuçları: Dependent Variable: lnmaas Sample: 1 75 Included observations: 75 Variable Coefficient Std. Error t-Statistic Prob. C 3.954106 0.059538 66.41324 0.0000 Yıl -0.021930 0.021019 -1.043349 0.3003 Yıl2 0.004375 0.001600 2.733929 0.0079 R-squared 0.465625 Mean dependent var 4.031098 Adjusted R-squared 0.450781 S.D. dependent var 0.167536 S.E. of regression 0.124160 Akaike info criterion -1.295318 Sum squared resid 1.109926 Schwarz criterion -1.202619 Log likelihood 51.57443 F-statistic 31.36845 Durbin-Watson stat 1.807774 Prob(F-statistic) 0.000000
Goldfeld-Quandt Test 2.Altörnek Sonuçları: Dependent Variable: lnmaas Sample: 148 222 Included observations: 75 Variable Coefficient Std. Error t-Statistic Prob. C 4.007507 0.976346 4.104598 0.0001 Yıl 0.019928 0.060603 0.328823 0.7432 Yıl2 -0.000102 0.000920 -0.110443 0.9124 R-squared 0.078625 Mean dependent var 4.513929 Adjusted R-squared 0.053031 S.D. dependent var 0.231175 S.E. of regression 0.224962 Akaike info criterion -0.106594 Sum squared resid 3.643762 Schwarz criterion -0.013895 Log likelihood 6.997288 F-statistic 3.072027 Durbin-Watson stat 1.684803 Prob(F-statistic) 0.052446
Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = 0.05 1.43<Ftab<1.53 = 3.2830 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir
Breusch – Pagan Testi Yi = b1 + b2 X2i + b3 X3i+……+ bk Xki +ui (1) 1.Aşama (1) Nolu denklem EKKY ile tahmin edilip. e1. e2. …..en örnek hata terimleri hesaplanır. Bu ei lerden hareketle hesaplanır. 2.Aşama 3.Aşama pi = a1 + a2 Z2i + a3 Z3i+……+ amZmi +vi (2) RBD = ?
Breusch – Pagan Testi 4.Aşama 5.Aşama H0 : a2= a3 =…..=am = 0 (Eşit varyans) H1 : En az biri sıfırdan farklıdır. (Farklı varyans) H0 reddedilir.
Breusch – Pagan Testi IT: İthalat Yıllar GSMH IT et 1971 16.40200 1.171000 5.317850 1981 69.24600 8.933000 -1.520700 1972 20.69800 1.563000 4.522890 1982 63.01400 8.843000 0.111170 1973 26.08100 2.086000 3.558590 1983 59.60700 9.235000 1.444510 1974 35.97600 3.778000 2.516650 1984 58.40200 10.75700 3.299440 1975 44.86500 4.739000 1.021660 1985 65.00800 11.34300 2.060240 1976 51.33100 5.129000 -0.374870 1986 72.86100 11.10500 -0.347510 1977 58.61000 5.796000 -1.719020 1987 83.75300 14.15800 -0.303920 1978 64.86500 4.599000 -4.644250 1988 87.35000 14.33500 -1.120760 1979 88.80100 5.069000 -10.78770 1989 103.7470 15.80000 -4.186170 1980 67.34400 7.909000 -2.019190 1990 145.3810 22.30000 -9.189460 IT: İthalat
Breusch – Pagan Testi 1.Aşama 2.Aşama pi 0.045111 0.018977 0.006813 0.064343 0.004446 0.42876 0.000964 1.914014 0.055765 1.384578 0.266704 0.285573 0.540614 1.163423 2.802939 0.820382 9.764475 0.15752 0.194494 0.080743
Breusch – Pagan Testi 3.Aşama RBD = 4.59 4.Aşama 5.Aşama H0 : a2 = a3 =…..=am = 0 (Eşit varyans) H1 : En az biri sıfırdan farklıdır. (Farklı varyans) H0 reddedilemez.
Glejser Farklı Varyans Testi 1.Aşama: Y ile X (veya X’ler) arasındaki ilişki tahmin edilerek, ilgili örnek hata terimleri e’ler bulunur. 2.Aşama: i2 ile ilişkili olduğu düşünülen bağımsız değişken için aşağıdaki modeller denenmektedir.
Glejser Farklı Varyans Testi 3.Aşama: Korelasyon katsayısı ve a’ların standat hata değerlerine göre en uyun model seçilip H0 : a2 = 0 H1 : a2 ≠ 0 test edilir. 4.Aşama: H0 kabul edilirse eşit varyans gerçeklemiştir sonucuna varılır.
Glejser Farklı Varyans Testi 1.Aşama: Yıllar GSMH IT et 1971 16.40200 1.171000 5.317850 1981 69.24600 8.933000 -1.520700 1972 20.69800 1.563000 4.522890 1982 63.01400 8.843000 0.111170 1973 26.08100 2.086000 3.558590 1983 59.60700 9.235000 1.444510 1974 35.97600 3.778000 2.516650 1984 58.40200 10.75700 3.299440 1975 44.86500 4.739000 1.021660 1985 65.00800 11.34300 2.060240 1976 51.33100 5.129000 -0.374870 1986 72.86100 11.10500 -0.347510 1977 58.61000 5.796000 -1.719020 1987 83.75300 14.15800 -0.303920 1978 64.86500 4.599000 -4.644250 1988 87.35000 14.33500 -1.120760 1979 88.80100 5.069000 -10.78770 1989 103.7470 15.80000 -4.186170 1980 67.34400 7.909000 -2.019190 1990 145.3810 22.30000 -9.189460 IT: İthalat
Glejser Farklı Varyans Testi 2.Aşama: 3.Aşama: H0 : a2 = 0 H1 : a2 ≠ 0 4.Aşama: Prob = 0.2058 > 0.05 H0 reddedilemez. Eşit varyans gerçekleşmiştir.
White Testi Y = b1 + b2 X2 + b3 X3+ u White Testi için yardımcı regresyon: u2 = a1 + a2 X2 + a3 X3+ a4 X22 + a5 X32 + a6 X2X3 + v Ry2 = ? White Testi Aşamaları: 1.Aşama H0: a2 = a3 = a4 = a5 = a6=0 H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama s.d.= k-1 c2tab=? a = ? 3.Aşama W= n.Ry2 = ? W > c2tab H0 hipotezi reddedilebilir 4.Aşama
White Testi lnMaaş = 3.8094 + 0.0439yıl - 0.0006 yıl2 White Testi için yardımcı regresyon: e2= -0.0018 + 0.0002 Yıl + 0.0007 Yıl2- 0.00003 Yıl3 + 0.0000004Yıl4 Ry2 = 0.0901 1.Aşama H0: a2 = a3 = a4 = a5=0 ; H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama a = 0.05 s.d.=5-1=4 c2tab=9.4877 3.Aşama W= n.Ry2 = 222(0.0901)= 20.0022 4.Aşama W > c2tab H0 hipotezi reddedilebilir
Lagrange Çarpanları(LM) Testi Y = b1 + b2 X2 + b3 X3+ u LM testi için yardımcı regresyon: Ry2 = ? LM Testi Aşamaları: 1.Aşama H0: b = 0 H1 : b0 2.Aşama s.d.= k-1 c2tab=? a = ? 3.Aşama LM= n.Ry2 = ? LM > c2tab H0 hipotezi reddedilebilir 4.Aşama
Lagrange Çarpanları(LM) Testi lnmaaş = 3.8094 + 0.0439yıl - 0.0006 yıl2 LM Testi için yardımcı regresyon: e2 = -0.2736 + 0.0730 lnmaas-tah Ry2 = 0.0537 1.Aşama H0: b = 0 H1 : b0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 222(0.0537)= 11.9214 4.Aşama LM > c2tab H0 hipotezi reddedilebilir
Ramsey Reset Testi Y = b1 + b2 X2 + b3 X3+…..+bkXk + ui 1.Aşama: Ramsey Reset testi için yardımcı regresyon: 2.Aşama: H0: ai = 0 (Eşit Varyans) H1: ai ≠ 0 (Farklı Varyans) Hipotezler hata payı ile t tablosundan bulunacak değer ile karşılaştırılır. 3.Aşama: thes > ttab H0 reddedilir.
Ramsey Reset Testi 1.Aşama: 2.Aşama: H0: ai = 0 (Eşit Varyans) H1: ai ≠ 0 (Farklı Varyans)
Ramsey Reset Testi ttab = tn-k,a = t20-3, 0.05 = 2.110 3.Aşama: thesap = |-0.0561| < ttab = 2.110 Ho reddedilemez thesap = 0.1663 < ttab = 2.110 H0 reddedilemez.
Park Testi i2 bilinmediğinden bunun yerine hata kareler toplamı ei2 kullanılır.
Park Testi 1.Aşama: 2.Aşama: H0 : = 0 (Eşit Varyans) H0 : ≠ 0 (Farklı Varyans) t hes > t tab H0 reddedilir. 3.Aşama:
Park Testi 1.Aşama: 2.Aşama: H0 : = 0 (Eşit Varyans) H0 : ≠ 0 (Farklı Varyans) 3.Aşama: t tab = t 18, 0.01 = 2.878 t hes < t tab H0 reddedilemez.
UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile Sayısı Y X u 1 2.2 2.8 -0.75464 17 1.5 2 -1.25412 3 3.5 -0.1301 18 5.8 7.2 1.74247 4.1 13.5 -1.53666 19 8.2 18.1 1.41032 4 -0.80818 20 4.3 6.2 0.49313 5 4.2 5.9 0.46833 21 9.4 16.1 3.11164 6 6.3 15.3 0.21216 22 5.1 25.2 -3.46933 7 4.6 9.7 -0.08417 23 2.4 -1.90818 8 8.8 26.4 -0.07012 24 8.1 13.4 2.48841 9 7.3 18.2 0.48526 25 4.9 5.6 1.24352 10 4.4 6.7 0.4678 26 -0.30556 11 11.3 1.61478 27 0.14142 12 4.7 0.06911 28 1.9 -1.2301 13 6.8 26.3 -2.04505 29 2.6 12.4 -2.76094 14 22.3 -0.64243 30 3.9 0.56938 15 3.1 6.1 -0.68181 31 12.9 1.51373 16 3.2 -0.6549 32 11.2 26.5 2.30482
UYGULAMA: Yi = 0 + 1Xi + i modeli için sabit varyans varsayımının geçerli olup olmadığını Grafik Yöntemle. Sıra Korelasyonu testi ile. Goldfeld-Quandt testi ile. Breusch – Pagan testi ile. Glejser Testi ile. White testi ile. Lagrange çarpanları testi ile Ramsey Reset testi ile Park testi ile.
Grafik Yöntem
Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r 0 ttab =? 2.Aşama a = 0.05 s.d.=? 3.Aşama 4.Aşama thes > ttab H0 hipotezi reddedilebilir
Sıra Korelasyonu Testi 1.Aşama H0: r = 0 H1: r 0 ttab = 2.042 2.Aşama a = 0.05 s.d.= 30 = 1.9454 4.Aşama thes < ttab H0 hipotezi reddedilemez.
Goldfeld-Quandt Testi c = 32 / 5 = 6.4 6 gözlem atılacak. (14.-19. gözlemler) 13 gözlemden oluşan iki grup için modeller 1.-13. gözlemler için Yi = 0.5096 + 0.6078Xi 20.-32. gözlemler için Yi = 3.8153 + 0.1723Xi
Goldfeld-Quandt Testi 1.Aşama H0: Eşit Varyans H1: Farklı Varyans 2.Aşama a = 0.05 Ftab =2.82 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir
Breusch – Pagan Testi 1.Aşama 2.Aşama
Breusch – Pagan Testi 3.Aşama RBD = 13.12 4.Aşama 5.Aşama H0 : a2 = a3 =…..=am = 0 (Eşit varyans) H1 : En az biri sıfırdan farklıdır. (Farklı varyans) H0 reddedilebilir.
Glejser Farklı Varyans Testi 1.Aşama: 2.Aşama: H0 : a2 = 0 H1 : a2 ≠ 0 3.Aşama: = 0.05 n –k = 32 – 2 =30 ttab = 2.042 4.Aşama: thes > ttab H0 reddedilebilir. Eşit varyans gerçekleşmemiştir.
White Testi White Testi için yardımcı regresyon: e2= -0.6909 + 0.3498X – 0.0058X2 Ry2 = 0.2296 1.Aşama H0: a2 = a3 = 0 ; H1 : ai’lerin en az bir tanesi anlamlıdır 2.Aşama a = 0.05 s.d.=3-1=2 c2tab=5.99 3.Aşama W= n.Ry2 = 32(0.2296) = 7.3472 4.Aşama W > c2tab H0 hipotezi reddedilebilir
Lagrange Çarpanları(LM) Testi LM Testi için yardımcı regresyon: Ry2 = 0.201 1.Aşama H0: b = 0 H1 : b0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.201) = 6.432 4.Aşama LM > c2tab H0 hipotezi reddedilebilir
Ramsey Reset Testi 1.Aşama: 2.Aşama: H0: ai = 0 (Eşit Varyans) H1: ai ≠ 0 (Farklı Varyans)
Ramsey Reset Testi ttab = tn-k,a = t32-3, 0.05 = 2.045 3.Aşama: thesap = 1.611 < ttab = 2.045 thesap = |-1.654| < ttab = 2.045 H0 reddedilemez.
Park Testi 1.Aşama: 2.Aşama: H0 : = 0 (Eşit Varyans) H0 : ≠ 0 (Farklı Varyans) 3.Aşama: t tab = t 32-2=30, 0.05 = 2.042 t hes < t tab H0 reddedilemez.
bilinmemesi durumu Yi = b1 + b2 Xi + ui Yi = b1 + b2 Xi + ui
UYGULAMA: 32 ailenin yıllık gıda harcamaları (Y) ve aylık ortalama gelirleri (X) aşağıda verilmiştir. Aile Sayısı Y X u 1 2.2 2.8 -0.75464 17 1.5 2 -1.25412 3 3.5 -0.1301 18 5.8 7.2 1.74247 4.1 13.5 -1.53666 19 8.2 18.1 1.41032 4 -0.80818 20 4.3 6.2 0.49313 5 4.2 5.9 0.46833 21 9.4 16.1 3.11164 6 6.3 15.3 0.21216 22 5.1 25.2 -3.46933 7 4.6 9.7 -0.08417 23 2.4 -1.90818 8 8.8 26.4 -0.07012 24 8.1 13.4 2.48841 9 7.3 18.2 0.48526 25 4.9 5.6 1.24352 10 4.4 6.7 0.4678 26 -0.30556 11 11.3 1.61478 27 0.14142 12 4.7 0.06911 28 1.9 -1.2301 13 6.8 26.3 -2.04505 29 2.6 12.4 -2.76094 14 22.3 -0.64243 30 3.9 0.56938 15 3.1 6.1 -0.68181 31 12.9 1.51373 16 3.2 -0.6549 32 11.2 26.5 2.30482 59
1.HAL: LOGARİTMİK DÖNÜŞÜMLER 1.Aşama H0: b = 0 H1: b 0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0178) = 0.5696 4.Aşama LM < c2tab H0 hipotezi reddedilemez.
2 .HAL: 1.Aşama H0: b = 0 H1: b 0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0509) = 1.6288 4.Aşama LM < c2tab H0 hipotezi reddedilemez.
3 .HAL: 1.Aşama H0: b = 0 H1: b 0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.2365) = 7.568 4.Aşama LM > c2tab H0 hipotezi reddedilebilir.
5 .HAL: 1.Aşama H0: b = 0 H1: b 0 2.Aşama a = 0.05 s.d.=2-1=1 c2tab=3.84146 3.Aşama LM= n.Ry2 = 32(0.0290) = 0.928 4.Aşama LM < c2tab H0 hipotezi reddedilemez.