Kümeler Küme, matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir. Bu tanımdaki "nesne" soyut.

Slides:



Advertisements
Benzer bir sunumlar
KÜMELER BİRLEŞİM KESİŞİM FARK.
Advertisements

FONKSİYONLAR Hazırlayan:Ogün İçel.
KÜME DÜNYASINA GİDELİM
DOĞRU VE DÜZLEM.
DOĞRUNUN YOLCULUĞU.
BU KONUDA ÖĞRENECEKLERİMİZ
KÜMELER.
BAĞINTI SAYISI VE ÇEŞİTLERİ Kim korkar matematikten?
MODÜLER ARİTMETİK.
HAZIRLAYANLAR HATİCE MERVE ÜNAL AYŞE ESKİCİ HİLAL POLAT NURŞAH ERDOĞAN
KÜMELER.
RİZE ÜNİVERSİTESİ BAHAR YARI YILI MATERYAL DERSİ
MATEMATİK 6. SINIF KONU: KÜMELER.
KÜMELER.
KÜMELER.
Kümeler.
MATEMATİK SEMBOLLERİ Seher Beste Egrilmez.
VARLIKLAR BİRARAYA GELEREK TOPLULUK OLUŞTURURLAR.
ve Denklik İlişkileri Kümelerde Eşitlik HAZIRLAYANLAR:
TBF Genel Matematik I DERS – 1 : Sayı Kümeleri ve Koordinatlar
KÜMELERDE İŞLEMLER KÜMELERDE BİRLEŞİM İŞLEMİ KÜMELERDE KESİŞİM İŞLEMİ
KÜMELER.
KÜMELER GEZEGENİNE HOŞ GELDİNİZ.
KÜMELER KAZANIMLAR 1-Bir kümeyi modelleri ile belirler, farklı temsil biçimleri ile gösterir. 2-Boş küme ve evrensel kümeyi modelleriyle açıklar.
KÜMELER.
İŞLEM TANIM: A boş olmayan bir küme olmak üzere,A×A nın bir R alt kümesinden A ya tanımlanan her fonksiyona, işlem denir.İşlemi tanımlarken,’’
KÜMELERDE EŞİTLİK VE DENLİK İLİŞKİLERİ
FONKSİYONLAR.
FONKSİYONLAR f : A B.
DOĞAL SAYILAR VE TAM SAYILAR
KÜMELER İLERİ.
Ö.T.M.G Öğr. Gör. Özgür ŞİMŞEK Ozan Yusuf YILMAZ /B
ANASAYFA  İ yi tanımlanmış, birbirinden farklı bir tak›m nesnelerden oluşan toplulu ğ a "küme" denir.  JOHN VENN (1834 – 1923)  John Venn, kendi adıyla.
TEMEL KAVRAMLAR.
KÜMELER İLE İŞLEMLER.
KENAN ZİBEK.
FONKSİYON TARİHİ FONKSİYON
Kümeler ve Gösteriliş Şekilleri
KÜMELER.
KARTEZYEN ÇARPIM Sıralı İkili İki Kümenin Kartezyen Çarpımı
KÜMELER GEZEGENİNE HOŞ GELDİNİZ
HAZIRLAYAN GÖZDE ÖZGÜR KONU: KÜMELER.
KÜMELER.
KÜMELER.
KÜME ÇEŞİTLERİ 2. Sonlu ve Sonsuz Küme 1.Boş Küme 3. Evrensel Küme
BOŞ KÜME DENK KÜME EVRENSEL KÜME EŞİT KÜME İÇİNDEKİLER.
MUSTAFA GÜLTEKİN Matematik A Şubesi.
KÜMELER.
KÜMELER.
MERAL GÜNEŞ B(GECE). KÜMELER Herkes tarafından bilinen, elemanları iyi tanımlanmış,birbirinden farklı nesnelerin veya şekillerin bir araya.
Biçimsel Diller ve Soyut Makineler
KÜMELER ERDİNÇ BAŞAR.
KÜMELER.
KÜMELER.
Ders Matematik Konular; Kümelerin tanımı Kümenin elamanı nedir?
KÜMELER KAZANIM:Bu konu 6. sınıf konusu olup bir kümeyi modelleri ile belirler, farklı temsil biçimleri ile gösterir.
BAĞINTI & FONKSİYONLAR.
KÜMELER.
MERHABA ÇOCUKLAR, BUGÜNKÜ DERSİMİZ KÜMELER. ŞŞŞŞimdi gelecek olan hayvanları söyleyelim.
Bulanık Mantık Bulanık Mantığın Temel Kavramları
VARLIKLAR BİRARAYA GELEREK TOPLULUK OLUŞTURURLAR.
KÜMELR Kümelerin çeşitleri.
Tamsayılar.
TAM SAYILAR.
KÜMELER HAZIR MISIN?.
KÜMELER HAZIRLAYAN : SELİM ACAR
Özel Çakabey Anadolu Lisesi
KÜMELERDE KESİŞİM VE BİRLEŞİM İŞLEMİ
KÜMELER.
Sunum transkripti:

Kümeler Küme, matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir. Bu tanımdaki "nesne" soyut ya da somut bir şeydir; fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade eder. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıktır. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif eder. O halde, matematikte "İyi tanımlı nesnelerin bir topluluğuna küme denir" biçiminde bir tanımlama sezgisel olarak ilk başta yeterli olacaktır. matematikseltanımsızkavramdırmatematikseltanımsızkavramdır Tanımda geçen nesne sözcüğü aslında yeterince açıklık ifade eden bir sözcük değildir. Ama sezgisel olarak, kümeyi oluşturan nesnelerin iyice tanımlı olduklarını; yani belirgin, başka nesnelerden ayırdedilebilir şeyler olduklarını düşünüyoruz demektir. Bir bakıma, bir kümeyi oluşturan nesnelerin tek tek neler olduklarını düşünmekten çok, bir arada düşünebilir olmaları önemsenir. Bir kümeyi oluşturan nesnelere o kümenin ögeleri veya batısal terimi ile elemanları adı verilir. Güneş, evrendeki yıldızlar kümesinin bir ögesidir. Bir kümenin ögesi olan bir nesneye o kümenin içindedir ya da kümeye aittir denir. Küme tanımına göre bir öge ya kümenin içindedir ya da değildir. ögeleri

Küme Kavramları - Eğer a elemanı A kümesine aitse bu ifade a ∈ A diye; değilse a ∉ A gösterilir. A kümesinin eleman sayısı belirtilirken s(A) veya m(A) ifadesi kullanılır. A kümesinin eleman sayısı belirtilirken s(A) veya m(A) ifadesi kullanılır. A ile B' nin kesişimi A ∩ B şeklinde gösterilir. A ile B' nin kesişimi A ∩ B şeklinde gösterilir. - A ile B' nin birleşimi A ∪ B şeklinde gösterilir. A' nın B'den farkı A/B, B'nin A'dan farkı B/A olarak gösterilir. A' nın B'den farkı A/B, B'nin A'dan farkı B/A olarak gösterilir. Eğer A kümesinin elemanlarının aynısı B kümesinde de varsa A ⊂ B(A,B'nin alt kümesidir.) veya B ⊂ A(B, A'yı kapsar.) ifadesi kullanılır. Eğer A kümesinin elemanlarının aynısı B kümesinde de varsa A ⊂ B(A,B'nin alt kümesidir.) veya B ⊂ A(B, A'yı kapsar.) ifadesi kullanılır. - Eleman sayısı,kümenin içinde bulunan eleman sayısına bakılarak hesaplanır. - Aynı eleman birden fazla,aynı küme içerisine yazılamaz.

Kümelerin Gösterilişi 1-Liste Yöntemi:Küme elemanları {} sembolünün içine,aralarına virgül konularak yazılır. Örnek: A = {1,2,3} 1-Liste Yöntemi:Küme elemanları {} sembolünün içine,aralarına virgül konularak yazılır. Örnek: A = {1,2,3} 2-Ortak Özellik Yöntemi:Kümenin elemanlarını, daha somut ya da daha kolay algılanır biçimde gerektiğinde sözel, gerektiğinde matematiksel bir ifade olarak ortaya koyma biçimidir. Örnek: A = {x:(X’in özelliği)} Burada “x: “, “öyle x’lerden oluşur ki” olarak okunur. 2-Ortak Özellik Yöntemi:Kümenin elemanlarını, daha somut ya da daha kolay algılanır biçimde gerektiğinde sözel, gerektiğinde matematiksel bir ifade olarak ortaya koyma biçimidir. Örnek: A = {x:(X’in özelliği)} Burada “x: “, “öyle x’lerden oluşur ki” olarak okunur.

3-Vann Şeması(Şema Yöntemi) Küme, kapalı bir eğri içinde her eleman bir nokta ile gösterilip noktanın yanına elemanın adı yazılarak gösterilir. 3-Vann Şeması(Şema Yöntemi) Küme, kapalı bir eğri içinde her eleman bir nokta ile gösterilip noktanın yanına elemanın adı yazılarak gösterilir. Örnek: Örnek:

Boş Küme Elemanı olmayan kümelere boş küme denir. Elemanı olmayan kümelere boş küme denir. Boş kümeler tüm kümelerin alt kümesidir. Boş kümeler tüm kümelerin alt kümesidir. ∅ ifadesi ile gösterilir. ∅ ifadesi ile gösterilir. Örnek: A = {} veya A = {1’den küçük pozitif tamsayılar} Örnek: A = {} veya A = {1’den küçük pozitif tamsayılar}

Alt Küme-Öz Alt Küme A kümesinin her elemanı,B kümesinin de elemanıysa A kümesi,B kümesinin alt kümesidir. A ⊂ B olarak gösterilebilir. A kümesinin her elemanı,B kümesinin de elemanıysa A kümesi,B kümesinin alt kümesidir. A ⊂ B olarak gösterilebilir. A kümesi B kümesinin alt kümesi ise B kümesi A kümesini kapsıyor denir. B ⊃ A olarak gösterilir. A kümesi B kümesinin alt kümesi ise B kümesi A kümesini kapsıyor denir. B ⊃ A olarak gösterilir. A kümesinin kendisi hariç toplam alt küme sayısı,öz alt küme sayısıdır. A kümesinin kendisi hariç toplam alt küme sayısı,öz alt küme sayısıdır. Her küme kendisinin alt kümesidir. Her küme kendisinin alt kümesidir. Boş küme her kümenin alt kümesidir. Boş küme her kümenin alt kümesidir. n elemanlı bir kümenin alt küme sayısı 2’n-(2 üssü n)’dir. n elemanlı bir kümenin alt küme sayısı 2’n-(2 üssü n)’dir.

Eşit Küme-Denk Küme Aynı elemanlardan oluşan kümelere eşit kümeler denir. Eleman sayıları eşit olan kümelere denk kümeler denir. Aynı elemanlardan oluşan kümelere eşit kümeler denir. Eleman sayıları eşit olan kümelere denk kümeler denir. A = { 1, 2, 3 }, B = { 1, 2, 3 } ve C = { a, b, c } ise; A kümesi ile B kümesi eşittir. Sembolle A = B A kümesi ile C kümesi denktir. Sembolle C ≡ A A = { 1, 2, 3 }, B = { 1, 2, 3 } ve C = { a, b, c } ise; A kümesi ile B kümesi eşittir. Sembolle A = B A kümesi ile C kümesi denktir. Sembolle C ≡ A

Evrensel Küme Belirli bir alandaki tüm elemanları içeren kümeye evrensel küme denir. Genellikle E harfi ile gösterilir. Belirli bir alandaki tüm elemanları içeren kümeye evrensel küme denir. Genellikle E harfi ile gösterilir. Evrensel Küme Örnekleri: A = { a, b, c } ise bu kümenin evrensel kümesi E = { a, b, c, d } olabilir. Evrensel Küme Örnekleri: A = { a, b, c } ise bu kümenin evrensel kümesi E = { a, b, c, d } olabilir. Vann Şeması Örneği: Vann Şeması Örneği:

Kümelerde İşlemler 1-Kesişim:A ve B kümesinin ortak elemanlarından oluşan kümeye A ile B nin kesişim kümesi denir ve A ∩ B biçiminde gösterilir. 1-Kesişim:A ve B kümesinin ortak elemanlarından oluşan kümeye A ile B nin kesişim kümesi denir ve A ∩ B biçiminde gösterilir. Kesişimin Özellikleri: A ∩ ∅ = ∅ Kesişimin Özellikleri: A ∩ ∅ = ∅ A ∩ A = A A ∩ A = A A ∩ B = B ∩ A A ∩ B = B ∩ A (A ∩ B) ∩ C = A ∩ (B ∩ C) (A ∩ B) ∩ C = A ∩ (B ∩ C)

2-Birleşim:A kümesindeki ve B kümesindeki bütün elemanların oluşturduğu kümeye bu iki kümenin birleşim kümesi denir ve A ∪ B biçiminde gösterilir. 2-Birleşim:A kümesindeki ve B kümesindeki bütün elemanların oluşturduğu kümeye bu iki kümenin birleşim kümesi denir ve A ∪ B biçiminde gösterilir. Birleşimin Özellikleri A È Æ = A Birleşimin Özellikleri A È Æ = A A ∪ A = A A ∪ A = A A ∪ B = B ∪ A A ∪ B = B ∪ A A ∪ (B ∪ C) = (A ∪ B) ∪ C A ∪ (B ∪ C) = (A ∪ B) ∪ C A ∪ B = ∅ ise, (A = ∅ ve B = ∅ )’dir. A ∪ B = ∅ ise, (A = ∅ ve B = ∅ )’dir.

3-Kümelerin Farkı: 3-Kümelerin Farkı: A kümesinde olup, B kümesinde olmayan elemanların kümesine A fark B kümesi denir. A fark B kümesi A – B ya da A \ B biçiminde gösterilir. A kümesinde olup, B kümesinde olmayan elemanların kümesine A fark B kümesi denir. A fark B kümesi A – B ya da A \ B biçiminde gösterilir.

4-Bir Kümenin Tümleyeni: 4-Bir Kümenin Tümleyeni: A kümesinin dışındaki elemanlarının oluşturduğu kümeye A kümesinin tümleyeni denir. Başka bir ifade ile evrensel kümede olup A kümesinde olmayan elemanların oluşturduğu kümeye A kümesinin tümleyeni denir. A' şeklinde gösterilir. A kümesinin dışındaki elemanlarının oluşturduğu kümeye A kümesinin tümleyeni denir. Başka bir ifade ile evrensel kümede olup A kümesinde olmayan elemanların oluşturduğu kümeye A kümesinin tümleyeni denir. A' şeklinde gösterilir. Örnek: A = { 1, 2, 3 } ve E ={ Rakamlar } olsun. A kümesinin tümleyeni A' = { 0, 4, 5, 6, 7, 8, 9} olur. Örnek: A = { 1, 2, 3 } ve E ={ Rakamlar } olsun. A kümesinin tümleyeni A' = { 0, 4, 5, 6, 7, 8, 9} olur.

Örnek Sorular: Örnek Sorular:

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi