Kayış Kasnak Mekanizmaları

Slides:



Advertisements
Benzer bir sunumlar
Chapter Seventeen 11. HAFTA.
Advertisements

I ASİMO I ASİMO PREPARED: CENGİZ MURAT TEKİNBÜĞRÜ English Course Presentation TURKEY Mechatronics Engineering at SAKARYA UNIVERSITY PREPARED: CENGİZ.
Atama ve eşleme (eşleştirme) problemleri (Matching and Assignment problems)
1 T.C. Yükseköğretim Kurulu DİPLOMA EKİ PROGRAM ÖĞRENME ÇIKTILARI (KAZANIMLARI) DİPLOMA EKİ EĞİTİM SEMİNERİ Dönemi Bologna Sürecinin Türkiye’de.
S 2/e C D A Computer Systems Design and Architecture Second Edition© 2004 Prentice Hall Chapter 6 Overview Number Systems and Radix Conversion Fixed point.
Hareket halindeki insanlara ulaşın.Mobil Arama Ağı Reklamları Reach customers with Mobile Search Network.
INQUIRY FROM A B2B SITE Dear Sir/Madam We are writing to enquire about your sunflower oil. Please send us your product specification and price. Best Regards.
BİLİMSEL ARAŞTIRMA YÖNTEMLERİ
Kampanyanızı optimize edin. Görüntülü Reklam Kampanyası Optimize Edici'yi Kullanma Display Ads Campaign Optimizer. Let Google technology manage your diplay.
Key Terms from the Chapters. Chapter -1 Statistics, Data, and Statistical Thinking Fundemantal Elements of Statistics Statistics: EN: Statistics is the.
Veri Yapıları ve Algoritmalar
BM-305 Mikrodenetleyiciler Güz 2015 (6. Sunu) (Yrd. Doç. Dr. Deniz Dal)
Database for APED Büşra Bilgili | Emirhan Aydoğan | Meryem Şentürk | M. Arda Aydın COMPE 341.
S ÜLEYMAN Ş AH ÜN İ VERS İ TES İ DERS KAYIT İŞ LEMLER İ / COURSE REGISTRATION PROCESS.
İ.T.Ü. MAKİNA FAKÜLTESİ MAKİNA ELEMANLARI BAHAR YARIYILI Hareket İletim Mekanizmaları Prof. Dr Hikmet Kocabaş İ.T.Ü. Makina Fak.
(section 2) Bölüm 2 Düz dişli çark mukavemet kontrolü Makina Elemanları II İ.T.Ü. Makine Fakültesi.
(section 4) Bölüm 4 Konik Dişli Çark Mekanizmaları Makina Elemanları II İ.T.Ü. Makine Fakültesi (Bevel Gears)
AKSLAR VE MİLLER.
  Shifting deictic centre as source of ambiguity: (20) [on the phone]: There’s a hospital at the opposite end of town.  (21) [letter.
BÖLÜM 12 SÜSPANSİYON SİSTEMİ. BÖLÜM 12 SÜSPANSİYON SİSTEMİ.
Improvement to Rankine cycle
Practice your writing skills
YEDİTEPE ÜNİVERSİTESİ GÖZ HASTANESİ Refractive Errors Dr. Canan Aslı UTİNE.
This is beak. There are feet. There are wings. There are eyes. This is tongue.
DISCUSSION
CHILD PORNOGRAPHY IŞIK ÜNİVERSİTESİ
Students social life and join the social clubs. BARIŞ KILIÇ - EGE DÖVENCİ IŞIK ÜNİVERSİTESİ
Sieve Analysis Concrete Mix Design Technician School.
Doğrusal Programlama Linear Programming-2
Self-Registration on the Coats Supplier Portal
İSTATİSTİK II Hipotez Testleri 1.
ÖRNEK 5 8 PS,1450 D/d’lık bir elektrik motoru ile tahrik edilen santrifüj pompanın mili 700 D/d’ lık hızla dönmektedir. Hareket santrifüj pompaya dar-V.
Computerized ways to analyze language data
The Simple Linear Regression Model
BİLİMSEL ÇALIŞMA BASAMAKLARI SCIENTIFIC WORKING STEPS MHD BASHAR ALREFAEI Y
LEFM and EPFM LEFM In LEFM, the crack tip stress and displacement field can be uniquely characterized by K, the stress intensity factor. It is neither.
CHAPTER OUTLINE 7 The Production Process: The Behavior of Profit-Maximizing Firms The Behavior of Profit-MaximizingFirms Profits and Economic Costs Short-Run.
German shepherd dog. These dogs are said to be intelligent before they say.
Hibrit Sistemler ve Hibrit Sistem Ekonomisi
Ac POWER ANALYSIS Part III..
ZTM321 MAKİNE ELEMANLARI 3.hafta
RİJİT ROTORLARIN DİNAMİĞİ
MEDICAL WASTE SHREDDERS
MAKİNA TEORİSİ II STATİK KUVVET ANALİZİ Prof.Dr. Fatih M. Botsalı.
Chapter 9: Box-Jenkins (ARIMA) Methodology
WEEKS Dynamics of Machinery
Döngüler ve Shift Register
WEEK 12 Dynamics of Machinery
NİŞANTAŞI ÜNİVERSİTESİ
İSTATİSTİK II Hipotez Testleri 1.
MAKİNA TEORİSİ II GİRİŞ Prof.Dr. Fatih M. Botsalı.
Turkish cuisine is very popular around the world. It has a very wide options for everyone. The variety of the recipes and the ingredients which are grown.
NİŞANTAŞI ÜNİVERSİTESİ
“am, is, are”.
NİŞANTAŞI ÜNİVERSİTESİ
İSTATİSTİK II Hipotez Testleri 3.
NİŞANTAŞI ÜNİVERSİTESİ
Feminism, unlike the idea of ​​ mankind, is a trend that is prioritized to bring gender inequality to the agenda. The notion of feminism, which is not.
(Dr. Öğr. Üyesi Deniz Dal)
Chapter 5 – Balancing of accounts
Chapter 4 - The effect of profit or loss on capital and double entry system for expenses and revenues Bölüm 4 – Kâr ve zararın sermaye üzerindeki etkisi.
PREPARED BY: 9-B STUDENTS. Sumerians, who laid the foundations of great civilizations and the world cultural heritage, emerged to the st The Sumerians.
DÜZLEMSEL MEKANİZMALARIN
Problem Homework-06 In the control system shown above, R(s) is the reference input and C(s) is the output. Write the Matlab code to draw the Bode.
IE Computer Integrated Manufacturing and Automation U. MAHİR YILDIRIM Computer Numerical Control II.
SUBJECT NAME Prepeared by Write the names of group members here
People with an entrepreneurial mindset are always brave.
NİŞANTAŞI ÜNİVERSİTESİ
Sunum transkripti:

Kayış Kasnak Mekanizmaları Hareket İletim Mekanizmaları Makine Elemanları II İ.T.Ü. Makine Fakültesi (Belt and Pulley mechanism)

Kayış tipleri

Kayış tipleri Comparison of flat belt and V belt

Kayış Kasnak Mekanizmaları Düz kayış V- kayışları Dişli kayışlar Zincir mekanizmaları Sürtünmeli çarklar

Dişli Çarklar ve Kayış Kasnak

Teorik Esaslar Çevrim oranı sarım açısı ile sınırlıdır. Bu şekildeki sarım açısı 100o kadardır.

Kayış Kuvvetleri Normal Doğrultu: sin(dβ/2)≈dβ/2

Kayış Kuvvetleri Normal Doğrultu: sin(dβ/2) ≈ dβ/2

Kayış Kuvvetleri Teğetsel Doğrultu: Cos(dβ/2≈1

Kayış Kuvvetleri dN reaksiyon, gelen kuvvetler FT1 ve FT2 , Eytelwein - Grashof

Çevre Kuvveti Çevre Kuvveti Yatak Kuvveti (Aks Kuvveti) β = 180o ise β ≠ 180o ise

Aks Kuvveti Çevre Kuvveti Yatak Kuvveti (Aks Kuvveti) β = 180o ise

Kayış Gerilmeleri A : Kayış kesiti ; Faydalı gerilme

(Santrifüj) Merkezkaç Kuvvet Tesiri Çevre hızı sebebi ile σf santrifrüj gerilmesi ve FTf kayış kuvveti meydana gelir.

Merkezkaç Kuvvet Tesiri Merkezkaç kuvvetler sebebi ile σf gerilmelerinin tayini için kayış elemanı üzerindeki kuvvetler

Merkezkaç Kuvvet Tesiri FTf kayış kuvvetleri ile bileşke Ff merkezkaç kuvveti arasındaki denge

Merkezkaç Kuvvet Tesiri Ff gelen, FTf reaksiyon kuvvetleri

Merkezkaç Kuvvet Tesiri Merkezkaç kuvveti tesiri dikkate alınırsa ifadesi kullanılmalıdır. Bileşke kuvvet Ff , ΔFf kısmi kuvvetlerinin toplamıdır.

Eğilme Gerilmesi σb eğilme gerilmesinin tayini için kayış elemanındaki geometrik oranlar s, dk'ya göre küçük olduğundan;

Eğilme Frekansı z kasnak sayısı, v kayış hızı ve L kayış uzunluğunun fonksiyonudur.

Kayış üzerindeki gerilmeler

Toplam Gerilme ; birim alana gelen güç

Optimum Kayış Hızı Nispeten küçük bir gerilme olan σb hesaba katılmaz ise faydalı güç; A=b.s kesidine orantılı P/A=σnv gücünün v çevre hızına bağlı olarak değişimi

Optimum Kayış Hızı Nispeten küçük bir gerilme olan σb hesaba katılmaz ise faydalı güç; olduğu yerde optimum hız elde edilir. vopt = 38 m/sn (kösele kayış)

v hızına bağlı kayış gerilmeleri v çevre hızına bağlı olmak üzere kösele kayıştaki gerilmeler

Kayış Mekanizmaları Kayış uzunluğu geometrik eğrilerin toplamıdır.

Düz kayışların boyutlandırılması Kayış uzunluğu

Boyutlar a: eksenler arası mesafe β: sarım açısı

Boyutlar x a α a

Kayış iç uzunluğu ve alınarak

Çok tabakalı düz kayışlar Kayış Genişliği P1 = 1 cm genişliğe gelen güç c1 = yük faktörü c2 = açı faktörü Extremultus Kayışlar Uzama : ; 80 tipi için

Mil Kuvveti FA1 ; birim genişlikteki çekme kuvveti Poliamid kayışlar yüksek elastikdir. Sonradan bir kontrol lüzumlu değildir.

V- Kayış Mekanizmaları Kayışın yuvaya şekil ve kuvvet bağlı olması halinde sürtünme katsayısı μ’nün tayini için kuvvetler

V- Kayış Mekanızmaları ΔF: öngerilme kuvveti ΔN: normal kuvvet μ ΔN: sürtünme kuvveti

Çevre Kuvveti Sürtünme katsayısı

Dar V-Kayışları Sarım Açısı: a

Çalışma Uzunluğu 630...12500 mm arasında Lw : öngerilme verildikten sonra ölçülür bw : tarafsız eksendeki kayış genişliği Ld = Lw + 2πhw : dış uzunluk 

Takribi çalışma uzunluğu

V Kayış özellikleri Dar V-kayışlarında h/b~1/1,123'dir, (Normal~1/1,6). Eğilmeye karşı daha elastiktir. Daha küçük kasnak çaplarında kullanılabilirler, yer ve ağırlık tasarrufu sağlanır.

Kayış Mekanizmaları Dişli kayış

Belt tensions

Belt tensions

Selection procedure Belt type: initial Selection Estimates of belt speed and speed ratio can be used as shown below to make an initial Selection of the type of belt required. If a constant speed ratio is important, use a Toothed belt if belt speed < 30 m/s, use a Vee belt

Belt type: initial Selection if belt speed < 40 m/s and, - speed ratio < 7:1, use a Vee belt - speed ratio < 8:1, use a Wedge belt otherwise, if speed ratio > 8:1 or belt speed > 40 m/s, use a Flat belt

Duty/Service factor Types of duty are categorised as follows: Light duty Medium duty Heavy duty Extra heavy duty The type of duty determines the service factor involved (S).

Duty/Service factor Service factors for typical driving and driven machines and for a variety of duties are shown in the table below. Further allowacne may be required if the consequences of failure are particularly serious. Some manufacturers' catalogues may give further advice on suitable values.

Duty/Service factor

Nominal speed ratio The speed ratio is a function of the pulley sizes. The minimum recommended pulley size for a given section depends on the flexibility of the belt and the mass/unit length. Pulleys are normally manufactured in standard sizes so the choice of the driving pulley should be the smallest standard size which is recommended for the chosen belt section such that the ratio obtained is near to the required value when matched with a larger standard size pulley.

Nominal speed ratio Pulley sizes are normally based on a pitch diameter, which may be less than the outside diameter. Minimum pulley diameters recommended for a range of belt types are as follows: Vee 67 mm Wedge 60 Flat 40 Polyvee 18 Timing 16

Belt length Belt Length (L) is a function of shaft center distance and pulley diameters. Most belts are made in standard lengths which are cheaper and easier to obtain than non- standard ones. Some (particularly plain flat belting) can be supplied in straight lengths which can be joined round the pulleys.

Belt length

Belt length However, these are recommended only if the assembly of a continuous belt is difficult. The nominal length calculated above should be modified to the nearest standard length, and the shaft centre distance amended to suit. Manufacturers’ catalogues should be consulted to determine the standard lengths available for specific belt types.

Power factors Allowable Power per Belt (Pb) is a function of the dimensions of the belt section and is obtainable from the manufacturer's catalogue. Plain flat belting is often rated as power per width dimension (kW/mm).

Power factors Power Correction Factors may be required to compensate for: Speed ratio Length of belt/pulley contact Total length of belt Appropriate manufacturers' catalogues will provide values and method of application.

Number of belts Number of Belts (X) refers to the total number of separate belts or the total width of (flat) belt required. This is given by: X = P'/Pb In the case of Vee type belts the value of X should be rounded up to the nearest whole number. For flat belt types the value of X should be rounded up to the nearest standard belt width available from the manufacturer.

Other factors Further refinement of the belt choice will result from consideration of commercial and reliability factors such as cost, availability etc, and belt life, pulley wear etc.

Select the type of belt required Optimising the choice of a suitable element is now a process of finding the best compromise (in the opinion of the designer) between the priorities of the system and the availability of the hardware. Select a suitable belt type, using 'best match" criteria.

Select the type of belt required As far as the factors involving numerical data are concerned, some yield a 'go/no-go‘ situation which will eliminate those which are too costly, too heavy, too big etc. The table below indicates the maximum performance to be expected from different belt types

Typical belt performance

Installation During the design of the installation for a belt drive, particular attention should be paid to the following: Maintenance of initial tension (where required), Adjustability of tension, Pulley alignment, Ease of removing and fitting belt, Protection from pollutants (lubricants, acids, grits etc) , Guarding from interference with operators' clothing, person etc

Belt types and features Five main types of belt are currently available. Details of their construction and performance are shown in the table below. An initial Selection of belt type should be made at an early stage of the design, based on estimates of speed and speed ratio.

Belt types and features

Belt types and features

Power rating ranges for belt types The power rating charts for the following belt types are supplied with this guide (courtesy of J.H. Fenner Ltd):

Power rating ranges for Vee belt

Power rating ranges for belt types Wedge

Power rating ranges for Timing Belts (courtesy of J H Fenner & Co Ltd)

For each belt type, the range of powers covered by a given belt section is denoted by a thick line and designated by a code. The elements of the code for Vee and Wedge belts are as follows: a number (eg: 200) shows the pulley pitch diameter limit a number (eg: 2) shows the number of belts a letter (eg: C) shows the belt section size

For Timing belts, the code simply denotes the section size For Timing belts, the code simply denotes the section size. Other manufacturers may show similar information in a slightly different format. The rating chart for Timing belts shows similar information from the same manufacturer. This time, the chart is confined to a particular width of belt (25mm) and wider belts should be uprated pro-rata.

A rating chart for Flat belts is also supplied, courtesy of Stephens Miraclo Belting Co. Belt codes here denote section size, and power ratings are given per unit belt width.

A rating chart for Flat belts

Basic Timing Belt Parameters Classical Timing belts

HTD- Curvilinear

GT - Curvilinear

Power method Designing a Synchronous Belt System Belt design procedures can be based on torque calculations or they can be based on power calculations.

1) The driven speed and the maximum driven torque required (including inertia load, shock loads, friction, etc) are used to calculate the required driven power 2) From information on the driver, driven equipment and operating period a service factor is obtained - see below

3) A design power is obtained based on the product of the Driven Power required and the service factor . 4) A belt section is initially selected using a graph as typically shown below 5) A drive geometry is derived selecting suitable pulleys, and belt Centre Distance – Some Pulley sizes are provided below

6) A Basic Power for the belt is calculated and a mesh factor is calculated - see below 7) A suitable belt width is selected -Using a table as provided below- Some iteration may be required

Torque Method The classical MXL belt and the Curvilinear more advanced belt options are designed based on torque levels. The outline method for the MXL drive is provided below. The method used for the HTD and other modern belt options will be provided at some future date...

The MXL belts operate generally at relatively low belt speeds so the torque levels are similar for the normal range of pulley rotational speed. Torque ratings can be calculated of each of the MXL belt widths as follows: I have converted an imperial formula to a metric formula and minor differences with the original formulae results.. Torque ratings of belts Tr (Nm) at P2 PCDs (mm

Zincir Dişli Mekanizmaları

Zincir Dişli Mekanizmaları Chordal speed variation %

Zincir Dişli Mekanizmaları Chordal speed variation %

Sürtünmeli Çark Mekanizmaları Sürtünmeli çark mekanizmaları birbiri ile temasta bulunan ve kuvvet bağı ile güç ve hareket ileten çark mekanizmalarıdır

Sürtünmeli Çark Mekanizmaları Kaymadan yuvarlanma halinde çevrim oranı: tek kademede: i  6 (14) Kayma hesaba alınırsa: kayma: = 0.005.....0.5

Sürtünmeli Çark Mekanizmaları Kaymadan yuvarlanma olması için normal kuvvet:  : sürtünme katsayısı Sürtünmeli Çark Tipleri: Evans Friction Cone Toroidal CVT

Ders Kitabı (Notu) Ders Notları mevcut Diğer Kaynaklar Joseph Edward Shigley, Mechanical Engineering Design, McGraw-Hill International Editions, First Metric Edition, 1986. Tochtermann/Bodenstein, Konstruktionselemente des Machinenbaues 1,2, Springer-Verlag Juvinall, R.J. and Marshek, K.M., Fundamentals of Machine Component Design, 3rd Edition, John Wiley & Sons, 2000. Deutschman, A.D., Wilson,C.E and Michels, W.J., Machine Design, Prentice Hall, 1996. Erdman, A.G. and Sandor, G.N., Mechanism Design Analysis and Synthesis, Vol. 1, 3rd Edition, Prentice Hall, 1997. Shigley, J.E., Uicker, J.J., Theory of Machines and Mechanisms, Second Edition, McGraw-Hill, 1995.